Сеть забрасываемых ботов-разведчиков
Известна концепция “навязанной” радиолокации: для зондирования используются сигналы уже существующих систем, например, телевизионный сигнал или сигнал сети GSM. Интересно следующее развитие темы. Предположим, что у нас есть небольшие (до десяти сантиметров) боты, построенные на передовых достижениях твёрдотельной электроники. Боты замаскированы под “природные объекты”. Например, это могут быть мелкие “камешки”. Они полностью автономны, используют подходящую схему электропитания. Полезная функция: боты принимают сигнал выбранного опорного поля, в том числе, отражения, тщательно измеряют его, оцифровывают и записывают результат. Накопленный результат боты раз в сутки передают в коротком импульсе на пролетающий спутник. Собранные измерения проходят предварительную обработку, потому что нужно извлечь полезную информацию, дабы эффективно использовать короткое окно связи. Все боты поддерживают (при помощи сигнала GPS, например) точное синхронное время, метки времени записываются вместе с собираемыми радиоданными.
А забрасываются данные изделия, например, со стратосферного “метеозонда”, который “случайно” пересёк границу на высоте около 27 тысяч метров. Замаскированные под камешки боты просто сбрасываются над заданным районом (малонаселённым): они не обязательно должны иметь плотность типичного камня, поэтому могут падать без парашюта. Кассета с ботами позволяет засеять несколько квадратных километров с борта одного “метеозонда”.
Зная ключевые параметры сигнала, который служит опорным полем для ботов, имея высокоточное синхронное время, можно организовать измерение отражений сигнала. Таким образом сеть ботов образует пассивную радиолокационную систему, проводящую разведку. Внутри сети у ботов разные роли – одни принимают только опорный сигнал, точно фиксируя его текущие параметры. Другие – сосредоточены на детектировании и усилении принятых отражений. Корректировка ролей, настройка сети, могут производиться позднее, например, по команде со спутника.
На случай обнаружения бота каким-нибудь грибником (хотя, кто будет каждый камень осматривать, не получив соответствующей ориентировки?) – предусмотрена система ликвидации электронной начинки. Нет, вовсе не обязательно подрывать бота, делая его опасным для грибника. Достаточно при вскрытии корпуса тихо и тщательно сжечь всю микроэлектронную начинку, превратив её в “кусочек смолы”, уничтожив ценные следы. Сам по себе искусственный камень не несёт особой информации: мало ли кто баловался – может, это кусок сбежавшего квадрокоптера. (Электроника с эффективной функцией самоуничтожения – это перспективная тема DARPA, между прочим.)
Сама полезная функция наблюдения появляется только после того, как собранные ботами данные сведут и обработают в центре, получив исходную информацию через спутниковый канал. Да, получается задержка – картину нельзя наблюдать в режиме онлайн, а только спустя сутки. Зато динамика сохраняется: записаны метки времени и все сигналы на заданном интервале времени. Может показаться, что сложно сжать длительную запись радиосигнала в один короткий импульс (секунды), который отправляется на спутник. Но для этого каждый бот оснащён достаточно мощным вычислителем. Передаётся не записанный сигнал в подробностях, а лишь краткая форма, описывающая заданные характеристики. Например, для принятого отражённого сигнала, это может быть сдвиг по времени и по частоте – и тот, и другой параметр требуют лишь нескольких байтов для записи с высокой точностью.
Основную проблему составляет источник питания. Конечно, напрашивается радиоизотопный вариант. Но он тут вряд ли подходит. Во-первых, сложно экранировать, чтобы бот не светил. Во-вторых – радиоизотопы представляют собой прочный след: часто по их составу и свойствам можно однозначно определить производителя. В-третьих – опасно для “грибника”. Питание от самого принимаемого ЭМ-поля, конечно, чисто теоретически возможно, но относится к области научной-фантастики, так как что-то вычислять о питающем поле, да ещё результаты передавать на спутник, уже точно не получится на практике. Возможно, годятся какие-то термоэлектрические решения. И главный инженерный конфликт тут в том, что для сложных вычислений нужна большая энергия (да, это достаточно фундаментальный вопрос физики, но пока никто не выяснил, можно ли вообще вычислять, не расходуя энергию, – хотя, классические основы термодинамики как бы прозрачно намекают, что нет, нельзя; но вопрос, тем не менее, остаётся открытым с квантовой стороны).
Как можно обнаружить такую сеть? Полупроводники можно детектировать дистанционно по наведённому излучению (так работают нелинейные локаторы, или детекторы нелинейных переходов). Но для этого потребовалось бы облучать “район залегания” ботов достаточно мощным ВЧ-излучением, пытаясь как-то вычленить из отражённого сигнала слабые вторичные гармоники, связанные с полупроводниками. Вряд ли это удастся сделать с большого расстояния, например, с борта пролетающего самолёта. Кроме того, полупроводниковую часть бота можно хорошо экранировать: если мы имитируем камень, то место для экранов имеется. Неустранимый элемент только один – приёмная антенна бота (передающая – открывается только в момент отправки данных на спутник). Но приёмную антенну можно моментально отключать, как только бот “услышал” подозрительный мощный зондирующий сигнал (решение известно по продвинутым “жучкам”).
Что за информацию можно было бы собирать при помощи таких ботов? Как минимум, подобная пассивная радиолокация позволит фиксировать самолёты и другие летательные аппараты, на достаточно большом расстоянии от крайнего бота – многие километры. Точность определения траектории будет невелика, но о перемещениях, направлении полёта судить можно. Впрочем, полёты самолётов – и так секрет Полишинеля: они вполне обнаруживаются спутниковыми РЛС. Боты могли бы наблюдать поезда, но тут помешает рельеф местности. Впрочем, при наличии сейсмодатчиков фиксировать движение наземной техники можно (такая схема используется на практике), но это уже не радиолокация. И тем не менее, придумать полезную цель наблюдения, которая недоступна другим методам, более традиционным, для такой сети радиоботов весьма сложно. В случае с воздушными целями – преимущество может быть разве что в ракурсе наблюдения, который позволяет “видеть” объекты снизу и принимать сигналы, направленные к земле.
Но такой метод технической разведки выглядит привлекательно для разового сбора информации в течение непродолжительного времени. Электромагнитную картину боты собирают во время спуска, а оказавшись на поверхности земли – фиксируют другие параметры: колебания почвы, звуки. Боты могли бы собирать радиационную картину, определять состав атмосферы и почвы, но это потребует оснащения их дополнительными сложным датчиками, которые не только существенно повышают стоимость, но и потребляют большую энергию (это касается сколь-нибудь универсальных химических анализаторов, прежде всего); такие датчики вряд ли получится спрятать. А главное тут, что данные, собранные на большой территории, оказываются синхронными, а это существенно повышает их ценность.
Адрес записки: https://dxdt.ru/2017/01/27/7932/
Похожие записки:
- Спутниковый радар Umbra
- Параллельные прямые и их пересечение
- Реплика: число 15 и факторизация квантовым компьютером
- Доверенные программы для обмена сообщениями
- Занятный замок Fichet 787
- Форматы ключей
- Квантовое время и частоты
- Стопроцентная вероятность и колода карт
- Параллельные прямые "у Лобачевского"
- Развитие автоматических "говорилок" (чат-ботов)
- Техническое: poison-расширение и SCT-метки в Certificate Transparency