Квантовое распределение ключей и практическая безопасность
Схемы с квантовым распределением ключей (или квантовая криптография, часто их называют так) – интересны тем, что в них большую роль играют утечки по побочным каналам. Почему-то часто приходится читать и слышать, что квантовая криптография обладает “абсолютной стойкостью” и её “невозможно взломать, так как взлом запрещён физическими законами квантовой механики”. Понятно, что подобные рассуждения соотносятся с реальностью примерно так же, как элементарная задача о бруске, который под действием силы тяжести без трения скользит по наклонной плоскости, со спуском горнолыжника по “чёрной” трассе (повышенной сложности). То есть, для “сферического в вакууме” случая про квантовую криптографию тоже всё верно написано, но на практике – можно здорово упасть с горы.
Квантовые протоколы предполагают, что стороны смогут определить факт прослушивания канала при помощи статистического анализа принятых квантовых значений, сравнивая переданные и принятые данные при помощи открытого канала. Действительно, если прослушивающая сторона принимала передаваемые фотоны (или другие носители “квантовой информации”), то она обязательно внесла изменения в статистику и будет обнаружена. Проблема в том, что кванты генерирует и излучает вполне классическая установка. Рассмотрим простой воображаемый аппарат, где поляризация испускаемого фотона задаётся при помощи вращающегося диска с набором фильтров: лазерный импульс генерируется в случайный момент времени – фотон проходит через тот или иной фильтр, оказавшийся на его пути, и соответственно поляризуется. В этой схеме определить поляризацию фотона можно не измеряя его – достаточно знать, в каком положении находился диск в момент излучения импульса. Предположим, что двигатель, который вращает диск, излучает систематическую помеху. Тогда положение диска можно вычислить по этой помехе (да, может потребоваться дополнительная информация о стартовой конфигурации и т.п., но это детали). Момент, в который лазер генерирует импульс-источник фотона, также можно определить по той или иной помехе, например, разряд наводит некоторое “эхо” в цепи питания (вариант не столь теоретический, как может показаться). В случае использования более продвинутой системы, построенной на квантовой запутанности, соответствующие утечки информации могут происходить в момент измерения передающей стороной своей части накопленных квантовых пар. Логика прослушивания при этом не меняется.
Если схема защиты передаваемого ключа базируется только на анализе сторонами статистики переданных квантов, то сторона, прослушивающая наводки и побочные излучения передатчика, в идеальном случае получает ту же информацию о ключе, что и участники обмена (соответственно, доступна даже проверка того, что канал, на квантовом уровне, не прослушал кто-то ещё; для этого нужно прочитать в открытом канале сообщения принимающей стороны). Естественно, реальная ситуация заметно сложнее, но и источников утечек – больше: реальная аппаратура содержит большое число элементов, при этом атакующая сторона может использовать активные методы, с отправкой зондирующих импульсов, внедрением разнообразных аппаратных закладок.
Так что говорить о том, что квантовая криптография обеспечит “абсолютную защиту” “на уровне физических законов” – неверно: эти же самые физические законы разрешают всевозможные утечки информации по побочным каналам, от которых необходимо защищаться вполне классическими методами. И тут, по сравнению с современными криптосистемами, ситуация никак не меняется.
Адрес записки: https://dxdt.ru/2017/06/17/8364/
Похожие записки:
- Синхронное время и "тики"
- Квантовая криптография и металлический контейнер
- "Блокирующие" источники случайности в операционных системах
- Постквантовый мир прикладной криптографии
- Автомобили, "подключенные" для сбора данных
- "Интеллект" LLM в повторах
- Таблицы подстановок: картинка
- ChatGPT и Volkswagen
- Техническое: certbot, проскользнувший мимо веб-сервера
- Сбой DNSSEC в .RU
- Тексты про ИИ и Situational Awareness с программным кодом