TLS, зашифрованные протоколы и DPI
Существенная часть информации о TLS-соединении доступна системам инспекции трафика (DPI). Чаще всего, конечно, упоминается поле SNI (Server Name Indication), в котором передаётся имя сервера. Для маскировки SNI в TLS 1.3 уже предложен дополнительный механизм Encrypted SNI.
Версии TLS ниже 1.3 подразумевают передачу серверных TLS-сертификатов в открытом виде (на начальном этапе установления соединения). В состав сертификата входят и имена сервера (может использоваться несколько), и открытый ключ сервера. Открытый ключ так же идентифицирует сервер, однако в некоторых случаях один и тот же ключ может использоваться с разными именами. Серверный сертификат является важным признаком классификации TLS-соединений, с другой стороны, сертификат имеет существенный размер и требует наличия в составе DPI-системы функций, которые могут разобрать сертификаты по полям и проанализировать – всё это заметная дополнительная вычислительная нагрузка, особенно, если соединений много.
В открытом виде (версии меньше 1.3) на начальном этапе передаются и клиентские сертификаты, которые в TLS используются для аутентификации клиента сервером. Клиентские сертификаты часто применяются в решениях VPN, соответственно, анализ клиентского сертификата в этих случаях позволяет точно распознать начало VPN-соединения.
В TLS 1.3 – сертификаты уже передаются в зашифрованном виде (и серверные, и клиентские), таким образом, переход на TLS 1.3 закрывает данную утечку информации в сторону DPI. (В принципе, передать клиентский сертификат в зашифрованном виде можно и в TLS предыдущих версий, но для этого потребуется сначала установить TLS-соединение, а потом – отправить с сервера запрос аутентификации, что не всегда совпадает с логикой использования протокола приложением.)
Особенно мощная система DPI может вести статистику соединения: в TLS-трафике присутствует открытая последовательность TLS-записей, поэтому анализирующая поток данных система видит размеры записей, а также их типы. Здесь, опять же, существенный шаг вперёд проделан в версии TLS 1.3. А именно: реальные типы записей в TLS 1.3 скрыты – виден только “исторический” тип Application, назначаемый всем записям в фиктивном заголовке, это делает поток типов однородным, полностью убирая важный источник метаданных для классификации трафика. В более ранних версиях TLS типы записей передаются в открытом виде, так что анализатор потока может обнаружить состояние TLS-сеанса (так как протокол использует записи разных типов для передачи сигналов, сообщений об ошибках и пр.)
DPI видит длину отдельных TLS-записей. Однако TLS позволяет приложению разными способами маскировать реальную длину передаваемых данных. А в TLS 1.3 имеется специально для этой цели предназначенный механизм на уровне защищённого транспорта: длина записей может выравниваться с помощью дополнения. Это означает, что реализация в версии 1.3, минимизирующая утечки метафинформации, может превратить поток данных в последовательность TLS-записей одинакового типа и одинаковой длины – DPI будет сложно за что-то зацепиться.
Подобный статистический анализ трафика требует существенных ресурсов: DPI необходимо не только собирать отдельные пакеты в сессии, но и выделять заголовки, накапливать данные для каждой сессии.
Естественно, хорошо защищённый протокол должен свести к минимуму утечки метаинформации. Это, частично, уже сделано в TLS 1.3, однако TLS является весьма универсальным протоколом, который, к тому же, проектировался с учётом повышения его эффективности в роли транспорта для массовых соединений, а не как протокол, скрытый от DPI. Поэтому пассивные анализаторы трафика всё ещё получают из TLS-соединения дополнительную информацию об узлах и состоянии приложений (дополнительную – по сравнению, например, с информацией уровня TCP, к которой относятся адреса узлов, номера портов, порядок и размер TCP-пакетов и др.). Методы криптографии позволяют спроектировать хорошо замаскированный протокол, но каждый шаг маскировки снижает эффективность, в частности, увеличивает затраты на установление соединения (это перебор адресов, генерация дополнительных секретов и т.д.). Тем не менее, ситуация тут такова, что даже небольшой, но верно спланированный шаг маскировки – существенно затрудняет работу DPI. В ряде случаев, рост “сравнительной сложности” на стороне DPI оказывается, как минимум, экспоненциальным: представьте, что специальный протокол использует перемешивание UDP-пакетов разных потоков, отправляемых по различным адресам серверов.
Адрес записки: https://dxdt.ru/2019/05/17/8773/
Похожие записки:
- Реплика: перенос доменных имён и GoDaddy
- Mozilla Firefox и внедрение рекламных сообщений
- Интернет-протокол "дымовой завесы"
- Шифр "Кузнечик" на ассемблере arm64/AArch64 со 128-битными инструкциями
- "Вес" значений омонимов в текстах для LLM
- Неверные обобщения "принципа Керкгоффса"
- Квантовая криптография и криптосистемы электронной подписи
- GNSS и управление трактором
- Детектирование текстов, сгенерированных ИИ
- Новые риски: автомобили-роботы в такси
- Постквантовые криптосистемы и квантовые компьютеры
Написать комментарий