Навигация “гражданских беспилотников” в условиях помех

Что может сделать небольшой “гражданский дрон” (беспилотник) в случае, если из-за помех нет связи с пультом управления и также потерян сигнал спутниковой навигации? Понятно, что самое простое – это попытаться относительно медленно спуститься вниз и приземлиться. Такой вариант обычно и запрограммирован. Но оператору хотелось бы, чтобы дрон вернулся к нему в любом случае, если не точно в точку старта, то хотя бы оказался неподалёку от неё.

Понятно, что если навигационная полностью система полагается на сигналы спутников (пусть это GPS, не так важно), то в условиях, когда эти сигналы недоступны из-за помех, беспилотник уже не может не то что вернуться в точку старта, но и нормально продолжать полёт. Конечно, проблему решает автономная инерциальная система навигации. Это самый надёжный вариант.

Качественная и надёжная инерциальная система заметно повысит стоимость беспилотника: комплектующие для точной и лёгкой системы могут оказаться дороже, чем сам аппарат-носитель – речь ведь идёт об относительно недорогом устройстве. Но, с другой стороны, можно взять дешёвые массовые сенсоры, используемые в смартфонах.

Да, точность в таком случае окажется низкой, будет накапливаться ошибка. Накопление ошибок – это основная проблема инерциальной навигации (для всех аппаратов, а не только для “гражданских беспилотников”). Даже небольшое, но непредсказуемое, “мгновенное отклонение” показателей датчиков, за несколько десятков минут полёта с интенсивным маневрированием вполне может привести к уводу измеряемых координат на сотни метров от реального положения аппарата. Но нам-то нужно решить довольно узкую задачу: автономное возвращение к оператору в критическом случае. Так что условия использования инерциальной навигации – тепличные: во-первых, пока работает спутниковая навигация, инерциальную систему можно эффективно корректировать, а история коррекции поможет фильтровать ошибки и после того, как аппарат перейдёт на полностью автономный полёт; во-вторых, возвращение к оператору должно происходить кратчайшим путём и без излишнего маневрирования, поэтому, в большинстве сценариев, автономный полёт займёт всего несколько минут, а аппарат будет стараться сохранять оптимальные для обеспечения точности “аварийной навигации” параметры ускорения. В общем, даже простая и не очень точная инерциальная система – справится.

Тут есть ещё один, весьма важный, момент: дрон мог находиться за каким-то препятствием, например, за углом здания – поэтому вернуться по прямой не выйдет, а для того, чтобы проложить безопасную траекторию, нужно знать, где возможен безопасный полёт. Это означает, что на борту требуется карта, на которой обозначены коридоры безопасного возвращения. Это, впрочем, не слишком сложная проблема: просто, перед началом полёта, придётся разметить эти самые коридоры, ну или надеяться на то, что дрону повезёт.

Современный дрон содержит камеру, часто – не одну. Это хорошее подспорье для создания автономной навигации. Так, параметры движения можно определять по перемещению в поле зрения объектива “текстур” поверхности, над которой происходит полёт. Этот приём некоторые разработчики любительских дронов уже используют. Другой вариант – применение простого машинного зрения: у оператора может быть с собой некая визуальная метка (табличка с QR-кодом, например), в случае потери связи, оператор показывает эту метку в сторону дрона – если последний находится в прямой видимости, то он сможет обнаружить метку с помощью камеры и лететь в её сторону (дальность легко вычислить, зная оптические параметры объектива). Понятно, что метка должна быть не слишком маленькой, а объектив и камера – позволять её обнаружить.

Неплохим развитием этой идеи является какой-либо активный оптический канал, например, лазерный фонарик, который светит в сторону дрона некоторым модулированным сигналом. Во-первых, подобному сигналу на практике сложно поставить помеху (из-за того, что приёмник может быть выполнен узконаправленным, а помехопостановщик не сможет принимать подавляемый сигнал, если только не находится между дроном и источником, либо не видит каких-то отражений); во-вторых, сам сигнал может передавать дрону значение дальности до источника, а азимуты – определит приёмник.

Итак, даже у любительского дрона может быть целый арсенал средств, обеспечивающих более или менее надёжный возврат к оператору и в полностью автономном режиме, и в режиме, когда оператор подаёт аварийный опорный оптический сигнал. Но, конечно, в коммерческих гражданских дронах эти методы вряд ли реализуют.

()

Похожие записки:



Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

1 комментарий от читателей

  • 1. 7th November 2019, 16:12 // Читатель ohotnik6O написал:

    например, магнитные антенны на ферритовом стержне тоже ещё никто не отменял… и ориентацию машинка не потеряет, и до базы будет грести в аварийном режиме, даже с одним неповреждённым винтом… на зов мамы, однако, и звери идут

Написать комментарий

Ваш комментарий:

Преграда для ботов: *

Если видите "капчу", то решите её. Это необходимо для отправки комментария. Обычно, комментарии поступают на премодерацию. Премодерация иногда занимает заметное время.