Протокол ECDH: пример в числах

Мы рассмотрим конкретный (хоть и игрушечный) пример реализации протокола Диффи-Хеллмана (DH) в группе точек эллиптической кривой (ECDH), а потом проведём на этот пример элементарную алгебраическую атаку, основанную на свойствах выбранных параметров, тем самым выясним, что параметры требуется выбирать аккуратно.

В качестве базового поля выберем GF(8191) – конечное поле порядка 8191 (8191 – простое число). Это поле изоморфно вычетам по модулю 8191, то есть, мы рассматриваем остатки от деления на 8191: 0, 1, 2… – поэтому далее элементы поля обозначаются целыми числами.

Выберем уравнение, задающее эллиптическую кривую E:
y2 = x3 + 2020x2 + x.
Это уравнение в форме Монтгомери, общий вид таких уравнений:
y2 = x3 + Ax2 + x, где A – элемент базового поля; в нашем примере A == 2020.

Не всякую эллиптическую кривую над конечным полем можно представить в форме Монтгомери. (Нетрудно заметить, что все кривые в форме Монтгомери вполне определяются значением коэффициента А, это удобно.)

Точки кривой соответствуют парам (X, Y) элементов базового поля, удовлетворяющим уравнению, включая особую точку “бесконечность”, которая в группе точек является нейтральным элементом. Пример точки: (839, 7305). Можно проверить (например, в WoframAlpha), что 73052 (mod 8191) == (8393 + 2020*8392 + 839) (mod 8191). Заметьте, что пара (0,0) лежит на кривой, но не является нейтральным элементом! Нейтральный элемент мы будем обозначать пустой парой () или буквой O, а точка (0,0), если её сложить с точкой (839, 7305), даст точку (1523,5367). Групповую операцию на E обозначим символом “+”.

Группа точек нашей кривой E имеет порядок 8176, то есть, состоит из 8176 элементов. Сразу заметим, что эта кривая не подходит для практического использования, и не только потому, что здесь “мало точек”, но и из-за разложения числа 8176 == 24 * 7 * 73. Однако для нашего примера – именно это и нужно. Кроме базового поля и эллиптической кривой, параметры протокола ECDH включают точку кривой, которая называется генератором. Поскольку генератор – это точка на кривой, он является элементом её группы. Выбираем точку (1029, 895) на роль генератора. Обозначим генератор буквой G. Если генератор G складывать с самой собой, то на каком-то шаге получим нейтральный элемент группы. Количество экземпляров G, которые нужно сложить, чтобы получить нейтральный элемент, называется порядком элемента. Для выбранного значения G порядок равен 1022. Обратите внимание, что порядок точки-генератора меньше порядка группы. G – генерирует подгруппу в E, порядок подгруппы всегда делит порядок группы (теорема Лагранжа): 8176 == 8*1022.

Протокол ECDH основан на умножении точки на скаляр (мы определим эту операцию ниже), то есть, на повторном сложении точки с самой собой. Значение 1022 порядка для генератора G означает, что операции протокола с этим генератором не будут затрагивать все точки группы кривой, а “зацикливаются” в меньшей подгруппе. На практике, выбор кривой и генератора представляет собой довольно сложную процедуру, цель которой – избежать возможных атак. Например, во многих реализациях специально выбирают кривые, группа точек которых имеет простой порядок.

Итак, мы выбрали поле GF(8191), уравнение кривой E y2 = x3 + 2020x2 + x, и генератор G = (1029, 895).

Кривая E

Введём умножение на скаляр: G + G + G = [3]G == 3*G. То есть, мы определили, что сложение трёх экземпляров точки с самой собой – записывается как 3*G. Важно заметить, что такое умножение – это не операция в группе точек кривой, а некоторая дополнительная конструкция.

Перейдём к протоколу ECDH между двумя сторонами. Стороны выбирают секретные скаляры – m и n, это целые положительные числа, меньшие порядка генератора G (понятно, что брать в качестве секретного скаляра единицу – особого смысла тоже нет). Стороны обмениваются по открытому каналу значениями m*G и n*G. Эти значения – точки на кривой, соответствующие n- и m-кратному сложению генератора G. Общий секрет стороны вычисляют так: m*(n*G) == n*(m*G) == (n*m)*G. Ограничение по порядку генератора вызвано тем, что нет смысла использовать числа, превышающие порядок: соответствующая точка всё равно будет находиться в подгруппе генератора.

Пример в числах:

m = 731
n = 395

m*G == (5720, 2990)
n*G == (6695, 8044)

m*(n*G) = [731](6695, 8044) == (4647, 2580) == n*(m*G) = [395](5720, 2990)

Таким образом, стороны получили общий секрет – точку на кривой с координатами (4647, 2580). Эта точка равна точке [731*395]G. Обратите внимание, что произведение 731 * 395 == 288745, можно привести по модулю 1022, то есть, по модулю порядка генератора G. (Но можно и не приводить – результат не изменится.) Значение общего секрета используется в качестве входных данных для вычисления ключей симметричного шифра. Именно так ECDH применяется в TLS. Точке соответствует пара (X, Y) элементов поля, но в качестве источника данных для ключа может использоваться только один элемент, обычно, это X-координата.

Сторона, прослушивающая канал, получила значения n*G и m*G, знает параметры поля, кривую, значение G, но не знает n и/или m. Вычисление n (или m) по известному n*G (или m*G) – называется задачей дискретного логарифмирования в конечной группе и, для произвольных групп точек эллиптической кривой достаточно большого порядка, вычислительно трудна. На практике используются параметры с порядками, близкими к 2256 (и более). Методов, позволяющих даже на специализированном суперкомпьютере за разумное время решить задачу дискретного логарифмирования для произвольных параметров и групп таких порядков – пока не найдено. Однако для некоторых специальных случаев – методы известны. Некоторые из этих методов элементарны, как будет видно из примера ниже.

Попробуем теперь взломать нашу “криптосистему” ECDH на эллиптической кривой. Конечно, в случае использованных параметров, не составляет труда простым перебором найти нужное значение секретного скаляра (оно лежит в интервале [2..1021]). Однако простой перебор здесь работает только потому, что порядок далёк от практических значений. Но есть гораздо более эффективный метод, который, с некоторыми упрощениям, и описан ниже.

Заметим, что число 1022 == 2 * 7 * 73. Это означает, что внутри нашей подгруппы генератора G могут быть меньшие подгруппы, порядок которых делит порядок генератора. Всякий элемент подгруппы представим в виде l*G – то есть: G + G+…+ G (l раз). Так что, возможно, найдутся такие элементы, которые конструируются из G, но при этом их порядок гораздо меньше 1022. Пусть такой элемент – P = (6736, 4842) == 14*G, где 14 == 1022/73 == 2 * 7. Используя P, мы можем “разбить” все элементы подгруппы генератора на подмножества с меньшим количеством элементов, каждый из которых соответствует той или иной “кратности” P. P имеет порядок 73, то есть 73*P == O, где O – нейтральный элемент группы (или, в других обозначениях: P + P + … + P = O). Это всего 73 различных значения (включая нейтральный элемент). Атака работает следующим способом. Сгенерируем и запишем в опорную таблицу все пары (k, k*P), где k пробегает [1..72]. Получив значение m*G (открытый ключ ECDH Q == m*G), мы будем вычитать из него G до тех пор, пока не обнаружим элемент, кратный P, который находится в опорной таблице. (Вычитание в группе эквивалентно сложению с обратным элементом, то есть -G, обратный к данному элемент группы кривой нетрудно вычислить.) Пусть мы на шаге q последовательного вычитания нашли подходящее k*P в таблице, тогда, зная k, мы можем вычислить секретный скаляр m == k * 1022/73 + q.

Проверим для m == 731, как в примере выше.

731*G == (5720, 2990). Вычитаем генератор G равный (1029, 895). Обратная к G точка – (1029, 7296), т.к. 7296 + 895 = 0 (mod 8191).

(5720, 2990) + (1029, 7296) == (5623, 8124)
(5623, 8124) + (1029, 7296) == (6316, 6614)
(6316, 6614) + (1029, 7296) == (7183, 6772)

Точка (7183, 6772) является кратной точкой для элемента P, который выбран нами выше в качестве опорного: [52]P == (7183, 6772). Таким образом, мы провели три операции сложения точек кривой (q == 3) и нашли заранее вычисленную опорную точку. Теперь мы можем определить секретный скаляр: 52 * 1022/73 + 3 == 731. Заметьте, что в одно значение P как бы “входит” 14 экземпляров G, то есть, чтобы гарантированно попасть в одну из точек опорной таблицы, потребуется не более 13 операций сложения точек. Для определения значения m == 731 прямым полным перебором – пришлось бы выполнить 730 сложений (если, конечно, не оптимизировать процесс поиска другим способом). Очевидно, что можно использовать и другие подгруппы для этой атаки – в каких-то случаях потребуется больше памяти для хранения опорной таблицы, но меньше операций с точками для поиска элемента таблицы; в других случаях – меньше памяти, но больше операций с точками.

Посмотрим, почему это работает, с другой стороны. В группе точек генератора все элементы представимы в виде l*G, для некоторого целочисленного l. Мы выбрали точку P == l*G. На следующем шаге мы вычисляем все значения k*P (их конечное количество) и записываем их в таблицу вместе с соответствующим k. То есть, мы построили таблицу дискретных логарифмов для P. Каждое из значений в таблице равно k*(l*G), что можно переписать как (k*l)*G (важно понимать, что здесь использованы два различных умножения: в целых числах, для k*l, и умножение скаляра на точку кривой для G). Соответственно, открытый ключ ECDH Q == m*G можно переписать как (k*l + r)*G, где k*l + r == m – представление целого m, где r – остаток от деления на l (0 <= r < l). Перепишем выражение: Q = (k*l)*G + r*G. (Здесь знак “+” уже превратился в обозначение операции сложения точек, но общий смысл не поменялся.) Мы вычитаем из значения Q генератор G до тех пор, пока полученный результат не совпадёт с каким-то из элементов нашей таблицы логарифмов для P, таким образом – подсчитывается значение остатка r. Как только мы нашли подходящий элемент в таблице, мы знаем все значения, нужные для вычисления секретного ключа m: значение k – из таблицы, l – известно из построения P, r – остаток, равный количеству операций вычитания, потребовавшихся для того, чтобы Q указало на тот или иной элемент таблицы. Таблица логарифмов содержит всего 72 элемента, что значительно меньше, чем 1022.

Естественно, наличие этой элементарной и хорошо известной “атаки” не мешает применять ECDH на практике – нужно только аккуратно выбирать кривую, поле и генератор: если порядок генератора является достаточно большим простым числом, то данная конкретная атака уже не работает. Поиск безопасной кривой, подходящей для практического применения, представляет собой задачу гораздо более сложную, чем наш “игрушечный” пример.

()

Похожие записки:



Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

Написать комментарий

Ваш комментарий:

Введите ключевое слово "FD257" латиницей СПРАВА НАЛЕВО (<--) без кавычек: (это необходимо для защиты от спама).

Если видите "капчу", то решите её. Это необходимо для отправки комментария ("капча" не применяется для зарегистрированных пользователей). Обычно, комментарии поступают на премодерацию, которая нередко занимает продолжительное время.