Спутниковая группировка Starlink от SpaceX как замена GPS
Пишут, что в Штатах в проект бюджета минобороны на 2021 год включили статью, посвящённую созданию навигационных систем, которые не зависят от GPS. Соответствующие системы должны быть предложены в 2023 году, то есть, совсем скоро. Озвученная причина – рост эффективности помехопостановщиков GPS: действующие в разных “горячих точках” силы и формирования регулярно сталкиваются с практической бесполезностью навигационных приборов, полагающихся на GPS, в том числе, на военный сигнал. Несколько лет назад я довольно подробно описывал то, как устроен спуфинг GPS. Не приходится сомневаться, что принципы спуфинга остались те же, а вот аппаратурная составляющая за это время наверняка сильно развилась.
Вообще, благодаря достижениям современной твердотельной электроники, сделать точный, надёжный, компактный и относительно дешёвый навигатор, основанный на приёме сигнала GPS – гораздо проще, чем, например, независящую от внешних сигналов инерциальную систему. Поэтому все держатся за GPS (ну и, опять же, финансирование создания и выведения на орбиту спутников, но это из другой области история). Основной проблемой для инерциальных систем является быстро накапливающаяся погрешность, причём, чем дешевле, меньше и проще система, тем быстрее падает точность. Скорее всего, возможны довольно устойчивые варианты на базе “микромашин”, но их только разрабатывают. Поэтому интересны комбинированные решения, где неточная инерциальная система регулярно и часто (например, раз в минуту) корректируется по внешнему сигналу, который, к тому же, сложно испортить помехой.
Одним из весьма эффективных вариантов оказывается использование в качестве источника такого сигнала большого количества космических аппаратов с общими синхронными часами, находящихся на низкой орбите, с которыми возможен обмен широкополосными сигналами. То есть, это уже не GPS. Это – в точности схема “спутникового Интернета”, предложенная, например, SpaceX (Starlink).
Как может помочь такая схема? Во-первых, есть возможность использования широкого спектра частот для связи со спутниками (в обе стороны, заметьте) – это означает, что можно применять замаскированные шумоподные сигналы: коррелятор, которому известен действующий секретный ключ, сможет успешно выделять и накапливать полезный сигнал спутника, распределённый псевдослучайным образом по полосе в несколько сотен мегагерц. Во-вторых, наличие на спутниках антенн с активным синтезом апертуры позволяет формировать достаточно узкие лучи – эти лучи могут быть направлены конкретному наземному пользователю, доставляя персональный сигнал (понятно, что точность формирования пятна приёма – сечения луча – всё равно, даже в идеальных условиях, составит сотни метров, но этого более чем достаточно). В-третьих, наличие широкого и доступного всем наземным терминалам (а не только станциям управления) канала в сторону спутников поможет активной коррекции сигнала в ответ на изменение обстановки в эфире, наблюдаемой конкретным приёмником.
Разберём все эти аспекты подробнее. Первый аспект – широкополосный сигнал. Современный сигнал GPS – узкополосный, более того, он использует кодовое разделение для каналов разных спутников. Широкая полоса делает возможным накопление коррелятором сигнала не только по времени, но и по частоте, а это существенно увеличивает возможности по повышению чувствительности. Такой “двумерный” подход вообще несравнимо богаче в плане кодирования, чем “одномерное” накопление по времени. При этом потенциальный помехопостановщик оказывается в сложной ситуации, так как ему нужно одновременно закрывать большую полосу, что требует много энергии даже в том случае, если помеха работает избирательно. Вообще, точно такая же техника опережающей отстройки от активных помех давно известна в радиолокации – излучатель локатора передаёт зондирующий сигнал на нескольких несущих частотах, при этом использует отражённый сигнал, который соответствует только одной из этих частот (ну или некоторой сложной комбинации нескольких).
Аспект второй – формирование узкого луча для канала в сторону наземной станции. Главное преимущество состоит в том, что помехопостановщику становится трудно принять тот же сигнал, который получает приёмник наземной станции. Конечно, всегда есть отражения, “боковые лепестки”, вторичное излучение и прочие эффекты, но их анализ в целях выявления полезного кода – несравнимо сложнее, чем приём общего сигнала. Вспомним, что сигнал ещё и кодируется индивидуально, с псевдослучайной заменой частот. Дополнительное преимущество – наземный приёмник получает больше возможностей по отстройке от простых широкополосных помех на основании направления на источник помехи. Отдельно нужно рассматривать возможность согласованного формирования лучей несколькими спутниками – тут и точность формирования “пятна” можно повысить, и защиту сигнала улучшить.
Третий аспект – индивидуальный канал в сторону спутников. Приёмник, используя этот канал и ключи аутентификации источника, может безопасно выработать общий со спутниковым источником сигнала секретный ключ, а далее периодически этот ключ заменять. Секретный ключ нужен для формирования псевдослучайной последовательности, задающей непредсказуемые для третьей стороны модуляцию и кодирование полезного сигнала, передаваемого спутником. А обнаружив эффективную помеху, если она всё же возникла, терминал может её непосредственно измерить и запросить смену кодирования, либо перейти на другую конфигурацию спутников.
Именно эти три аспекта, если их сложить вместе, позволяют создать хорошо защищённую от помех точную навигационную систему. Скорее всего, как отмечено выше, система будет комбинированной: спутниковый сигнал служит для коррекции автономных инерциальных систем. При этом спутниковые терминалы, требующие достаточно больших по размерам и тяжёлых антенн (ФАР), могут находиться на опорных станциях, например, на автомобилях или самоходных роботах, а носимый вариант навигатора, также имеющий встроенную инерциальную систему, будет взаимодействовать по радио с опорной станцией.
Что касается расположения спутников на низкой орбите: это снижает задержки, как и в случае организации интернет-доступа, а большое количество спутников (также диктуемое низкой орбитой) добавляет ещё один слой перемешивания: приёмник может выбирать сложные конфигурации спутников, используемых им в данный момент.
Естественно, Starlink – только один из примеров реализации подходящей технологии.
(Кстати, в 2012 году я писал о гипотетическом навигаторе, работающем без GPS.)
Адрес записки: https://dxdt.ru/2020/07/01/8922/
Похожие записки:
- ИИ на модных LLM/VLM и задачи-картинки
- ИИ и формулы окружностей
- Пример про запутывание контекста в LLM (GigaChat)
- Подстановки и определение понятия бита
- Кибернетический след в "Илиаде" и цветовой сдвиг
- Быстрая факторизация и постквантовые алгоритмы
- Буквы кучей и манускрипты
- Оптимизирующие компиляторы, микроконтроллер и ассемблер
- Реплика: число 15 и факторизация квантовым компьютером
- Космическая геолокация смартфонов
- Из практики: домашняя 3D-печать
1 комментарий от читателей
1 <t> // 11th September 2020, 14:41 // Читатель kaa написал:
Насколько я знаю, спутники Старлинк не снабжены иридиевыми стандартами частоты, в отличие от спутников GPS (ГЛОНАСС, Beidgou, Galileo), потому использоваться для навигации могут лишь приблизительно. Точная синхронизация времени по всей системе NAVSTAR (и в наземном сегменте и в спутниковом) – залог точности определения координат.
Плюс большое кол-во спутников Старлинк – сильно осложняет как построение их эфемерид (наблюдать придётся, как минимум, все находящиеся в нижнем слое…), так и приём этих эфемерид терминалом на Земле (принял ты эфемериды спутника – а он уже вышел из зоны твоей видимости…)
Написать комментарий