ECDSA и общий ГОСТ-ключ

Немного занимательных математических основ криптографии.

Российская криптосистема электронной подписи (ГОСТ 34.10-2012) работает в группе точек эллиптической кривой над конечным полем, как и криптосистема ECDSA, широко используемая в TLS и в других протоколах защиты информации. Можно ли устроить так, чтобы открытый и секретный ключи для ГОСТ-подписи и ECDSA – совпадали? Дело в том, что если ключи одинаковые, то это добавляет удобства: например, можно использовать некие унифицированные сертификаты. Естественно, это чисто теоретической вопрос, но он довольно занятный. Если вынести за скобки криптографические параметры и способ интерпретации битовых строк, то главное отличие между ГОСТ-подписью и ECDSA состоит в уравнениях, используемых этими криптосистемами. Упростим ситуацию и рассмотрим лишь уравнения вычисления значения подписи:

ECDSA: s = k^(-1)(h + rd)

ГОСТ: s = (rd + kh)

Здесь использованы общие буквенные обозначения: h – это подписываемое значение (можно считать, что это значение хеш-функции от сообщения – натуральное число); k – случайный параметр (натуральное число); r – значение х-координаты вычисляемой на основе k “случайной” точки кривой (это элемент конечного поля, но и его в нашем случае можно понимать как натуральное число), d – секретный ключ (натуральное число). Здесь везде опущены упоминания того, что значения вычисляются по модулю порядка группы точек, связанной с точкой-генератором G, но, опять же, это нисколько не помешает изложению.

Итак, сразу видно, что секретные ключи d для обоих вариантов математически эквивалентны, так как секретный ключ – это натуральное число. Это так и есть на практике, с оговоркой, что значение секретного ключа должно лежать в некотором интервале, но это технические детали. На практике, вряд ли имеет смысл использовать небольшое значение d, которое может оказаться угадываемым. То есть и для ГОСТ-подписи, и для ECDSA в качестве секретного ключа можно использовать одно и то же значение. Если оно находится в подходящем интервале, то в работе алгоритмов, реализующих криптосистемы, равным счётом ничего не поменяется.

Как быть с соответствующими открытыми ключами? С открытыми – уже не так просто. Открытый ключ в обоих криптосистемах – это точка кривой, полученная в результате “умножения” точки-генератора G на число d (значение секретного ключа): открытый ключ Q == dG. “Умножение” здесь взято в кавычки по той причине, что для точек кривой никакого умножения не определяется, но есть “повторное сложение” точек: так, 3*A == A + A + A, где A – точка кривой. Повторное сложение и позволяет ввести умножение на скаляры (на целые числа). Итак, открытый ключ – точка кривой Q – это пара координат (x, y). Значения координат, x и y, – элементы поля, над которым рассматривается кривая. Именно здесь и кроется отличие: штатно, обсуждаемые криптосистемы используют разные кривые и разные поля, поэтому полученные значения открытого ключа будут различными, если, конечно, мы хотим сохранить корректность прочих операций (а корректность сохранить необходимо).

Таким образом, из-за использования разных криптографических параметров (уравнения кривой, базового поля, точки-генератора), для одного и того же значения секретного ключа значения открытых ключей, вообще говоря, в ECDSA и ГОСТ-подписи не совпадут. Однако, если использовать одно и то же поле, одну и ту же кривую и генератор, то и значения открытых ключей будут равны, поскольку и в одной, и в другой криптосистеме – открытый ключ Q == dG. Обе криптосистемы могут работать на общей кривой – математические операции не отличаются. Понятно, что так как уравнения подписи разные, то подписи для одного и того же значения не будут совпадать, даже если ключи удалось привести к “единому формату”. (Естественно, подписи для сообщений могут отличаться и из-за использования разных хеш-функций.) Однако все операции (вычисление подписи, проверка) останутся корректными и для ECDSA, и для ГОСТ-подписи. Поэтому использовать, буквально, одну и ту же пару ключей (секретный – для вычисления подписи, а открытый – для проверки) уже окажется возможным.

Конечно, так как практические криптосистемы включают в свой состав не только математические операции, но и конкретные значения параметров, подобное объединение ключей вряд ли реализуемо за пределами занимательного упражнения.

Адрес записки: https://dxdt.ru/2020/11/25/8983/

Похожие записки:



Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

Написать комментарий

Ваш комментарий:

Введите ключевое слово "ZUDRG" латиницей СПРАВА НАЛЕВО (<--) без кавычек: (это необходимо для защиты от спама).

Если видите "капчу", то решите её. Это необходимо для отправки комментария ("капча" не применяется для зарегистрированных пользователей). Обычно, комментарии поступают на премодерацию, которая нередко занимает продолжительное время.