Параллельные прямые и их пересечение

Утверждение, что “параллельные прямые пересекаются” сейчас нередко встречается даже в более или менее серьёзных источниках. Например:

“Представим себе двумерное пространство — это легко. Например, бесконечную плоскость, где также справедливы аксиомы Евклида. […] Но можно легко представить и иной вариант — сферу. Это замкнутое конечное пространство, где параллельные прямые пересекаются, а сумма углов треугольника больше 180°”

Это цитата из статьи под названием “Космологический ликбез. Что такое Вселенная“, опубликованной на сайте издания “Троицкий вариант. Наука”.

Понятно, что параллельные прямые – не пересекаются по их определению. Тем более на сфере, где параллельных прямых, в смысле “аксиом Евклида”, нет. В статье, скорее всего, такое нестрогое сочетание использовано на правах фигуры речи. Видимо, среди аксиом здесь имеется в виду и пятый постулат, который, в привычной формулировке, утверждает, что через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной (на плоскости). Да, пятый постулат делает геометрию евклидовой, но интересно понять, откуда происходит сама идея, что “где-то параллельные прямые пересекаются”.

Как ни странно, тут можно вспомнить европейскую живопись 16-17 вв., которая развивалась вместе с проективной геометрией. Способы построения художественной перспективы, определяющие то, как именно трёхмерная сцена сужается в двумерное полотно картины, требуют для изображений различных параллельных линий общей точки, принадлежащей недостижимому горизонту. Это лучше всего видно на тех картинах, где сюжет содержит какую-нибудь подходящую плоскость, замощённую прямоугольниками (или даже квадратами). Я в качестве примера взял работу Бартоломеуса ван Бассена (1651), где описанный только что принцип иллюстрируют сразу и пол, и флаги, и стены.

Источник: Wikimedia

Если говорить более строго, то на картине “пересекаются” изображения прямых, которые в трёхмерной сцене соответствовали бы параллельным: квадратная плитка, которой замощён пол, порождает два класса таких прямых – на примыкающих краях, и на диагоналях каждой отдельной плитки. Возможно, это не самая лучшая иллюстрация, но принцип вполне виден. Этот принцип исторически стоит за проективной геометрией. Но в геометрии он возник скорее всего из желания систематизировать и обобщить многие геометрические наблюдения на плоскости, которые становятся гораздо проще, если тем или иным способом присоединить к этой плоскости некий бесконечно удалённый “горизонт”.

Так, классическая интерпретация проективной плоскости, основанная на погружении “обычной”, двумерной, плоскости в трёхмерное пространство, построена на сходной идее: вместе с плоскостью (не проективной, а исходной!) рассматриваются несобственные точки, соответствующие тем прямым объемлющего пространства, которые с плоскостью не пересекаются. Рассмотрение этих несобственных точек позволяет говорить о том, что всякие две различные прямые исходной плоскости имеют одну общую точку. И для параллельных (“в евклидовом смысле”) прямых такая общая точка является несобственной, то есть, не принадлежащей исходной “обычной” плоскости, поэтому прямые параллельными быть не перестают. Проективная плоскость же получается присоединением несобственных точек.

Сложно сказать, насколько сильно история изобразительного искусства повлияла на популярное суждение про “пересекающиеся параллельные прямые”, но знакомство с полотнами голландских живописцев свою роль тут наверняка сыграло.

()

Похожие записки:



Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

1 комментарий от читателей

  • 1. 15th July 2021, 07:17 // Читатель alex написал:

    >>но интересно понять, откуда происходит сама идея, что “где-то параллельные прямые пересекаются”

    Так из науч-попа же. Журналисты пишут что-то вроде “Лобачевский опровергнул то, что параллельные прямые не пересекаются”. Обыватель верит им на слово. А все уточнения и строгие определения ни тем ни другим как правило не нужны. Если вообще не запредельны.

Написать комментарий

Ваш комментарий:

Введите ключевое слово "5UQW3" латиницей СПРАВА НАЛЕВО (<--) без кавычек: (это необходимо для защиты от спама).

Если видите "капчу", то решите её. Это необходимо для отправки комментария ("капча" не применяется для зарегистрированных пользователей). Обычно, комментарии поступают на премодерацию, которая нередко занимает продолжительное время.