Постквантовые криптосистемы и квантовые компьютеры
Предполагается, что постквантовые криптосистемы – это защита от взлома на квантовом компьютере. На гипотетическом квантовом компьютере, который может реализовать соответствующие алгоритмы – алгоритм Шора, прежде всего. Конечно, современный уровень “хайпа” вокруг квантовых компьютеров уступает уровню “хайпа” вокруг “искусственного интеллекта”, тем не менее, квантовых компьютеров, подходящих для атак на используемые сейчас криптосистемы, ещё никто не показал. И даже ничего близко похожего – не показали. Но если почитать, например, статью про квантовые вычисления даже в англоязычной “Википедии”, то там почему-то уверенно обсуждаются “практические особенности”. Но до “практики” же ещё очень далеко. Пока что даже исследовательские алгоритмы, призванные показать “квантовое превосходство”, требуют создания специальных задач, которые структурно оптимизированы не в направлении вычислительной полезности, а в направлении использования свойств, потенциально доступных на имеющихся сейчас квантовых устройствах (см. boson sampling). Это естественно, весьма логично для этапа теоретических исследований на экспериментальном оборудовании, но не относится к практическому применению универсальных компьютеров.
В популярных изложениях нередко сильно искажают ситуацию (а иногда – искажают и не в совсем популярных: см. историю про “голографическую кротовую нору”), заявляя, что алгоритм Шора уже был успешно реализован на таких-то и таких-то конфигурациях. При этом для алгоритма Шора ключевое значение имеет не “суперпозиция состояний”, про которую всё время рассказывают, а реализация квантового преобразования Фурье, потому что именно в нём состоит содержательная часть – алгоритм должен работать потому, что схемы преобразования Фурье позволяют, в теории, определить период функции, заданной на значениях квантовых регистров. Однако в экспериментах именно эту часть (преобразование Фурье) существенно упрощают или вообще исключают, так как нет доступных экспериментальных квантовых схем, подходящих для практической реализации. На малых разрядностях (несколько битов/кубитов) преобразование Фурье для алгоритма Шора вообще не имеет вычислительного смысла, поскольку в принципе нельзя увидеть “длинных” периодов. Не исключено, что в случае “коррекции ошибок” на дополнительных схемах – преобразование Фурье совсем не будет работать для отыскания периода из-за того, что алгоритм-то, по предназначению, целочисленный. И это если оставить за скобками то, что создание гипотетического квантового компьютера большой разрядности напрямую затрагивает основания современной физики, поскольку именно такой квантовый компьютер с необходимостью попадает на границу между “квантовым (микро)миром” и “неквантовым (макро)миром”, которая совсем не ясна, вокруг которой строятся разные интерпретации.
Из этого, впрочем, не следует вывод, что квантовые компьютеры подходящей разрядности вообще не создадут. Но пока что трудности большие.
Адрес записки: https://dxdt.ru/2023/09/14/10996/
Похожие записки:
- Очередная атака на предикторы в схемах оптимизации CPU
- Манускрипты и переписывание трудов философа Клеомеда
- Метаинформация, мессенджеры и цепочки событий в трафике
- Вычисления на различной аппаратуре
- Геопривязка в персональных цифровых финансах
- Постквантовые криптосистемы в Google Chrome (Kyber768)
- TIKTAG и процессоры с кешированием
- Мониторинг: фитнес-браслет и смартфон
- Трафик на тестовом сервере TLS 1.3 и ESNI
- Сетевая геолокация передатчиков
- "SMD-развёртка" 555-го таймера
1 комментарий от читателей
1. 15th September 2023, 15:01 // Читатель beldmit написал:
Квантовые компьютеры уверенно присоединились к гонке между высокотемпературной сверхпроводимостью и термоядерными реакторами.
Написать комментарий