Неравенство вычитания и языки программирования
Кстати, есть весьма полезный пример, показывающий различие между формулами, компьютерами и интерпретацией формул. Его удобно приводить в качестве иллюстрации к объяснениям про “компиляторы, регистры, транзисторы и ячейки с битами”. Отчасти относится к предыдущей заметке. Сравним запись (a == b) с записью ((a – b) == 0). Например, в контексте записи и компиляции исходного кода на том или ином языке программирования: if (a == b) {…} и if ((a – b) == 0) {…} – известно, что результаты вычисления условий в таких if-ах на практике могут различаться; причём то, как именно они различаются, зависит и от языка, и даже от используемого системного окружения.
Наивная арифметическая логика тут такая: “a равно b, когда a-b == 0”. Но тут многое спрятано внутри. Во-первых, никто же не сказал, какого типа объекты a, b; во-вторых, не определено, что это за операция “-“; в-третьих, с равенством, как понятием, вообще говоря, тоже есть масса тонкостей. Так, в записи использован двойной знак равенства “==” – он означает какую-нибудь “эквивалентность”?
Знак “=” – один из самых сложных, с точки зрения машинной интерпретации. Собственно, поэтому и возникли “==”, “===”, “:=” и прочие сочетания. Вот если написано “f = m+n”, то что тут имеется в виду? Что “f” – это “формула” (или даже “функция”), имеющая вид _ + _? Или запись обозначает, что имя “f” нужно использовать как синоним для строки “mn”? Или это условие, которое обозначает проверку того, что число под именем “f” равно сумме чисел под именами “m” и “n”? Или какой-то другой вариант?
Можно предположить, что “==” это именно “равенство”. Но равенство объектов ещё нужно определить. Это не всегда просто. Особенно, для компьютеров. Особенно, если вы вынуждены использовать какие-нибудь представления с плавающей точкой – тут не только нули прекрасно расщепляются на разные представления, но и другие неожиданные эффекты постоянно проявляются (см. пример ниже). Конечно, наивный школьный подход предполагает, что “==” это, всё же, “простое и очевидное” равенство натуральных чисел, автоматически оснащённых сложением, умножением, и даже какими-то некоммутативными и разрывными вычитанием с делением. Что касается натуральных чисел, то, согласно распространённому мнению, тут-то вообще всё становится “очевидным” ещё после того, как в начальных классах про них много рассказали на примерах с палочками. Поэтому случается, что натуральные числа смело относят в разряд “самоочевидных феноменов”, с которыми работать умеют, якобы, даже вороны и, особенно, вороны (переключите ударение, если вы не LLM).
Однако, если не заходить далеко в орнитологическую область, а остаться с компьютерами, то и тут не нужно даже вспоминать теоретическую математику, чтобы символ “==” начал расплываться: достаточно того, что компьютеры, через языки высокого уровня, работают и со строками символов (что бы это ни значило). Сравнение строк требует дополнительных соглашений, с которыми сталкивались даже многие пользователи персональных компьютеров. Причём процесс тут двунаправленный, приводящий к занимательным эффектам: вспомним, что во многих случаях заглавные и строчные буквы ASCII считаются одинаковыми. Тогда строка “AbC”, выходит, равна строке “ABc”, пусть тут и некоторое видимое свойство перешло на соседнюю букву; но это означает, что “ABC” является повторением “Abc”, и хоть битов для записи нужно больше, ничто не мешает на каком-то этапе обработки переписать “ABC” как “abc” – что сплошь и рядом делается в программировании, а побочный эффект используется для защиты DNS-запросов, сколь бы странным это ни показалось.
А ведь “==” может предусматривать неявное приведение типов при сравнении, что прямо относится к не менее школьным, хоть и некоммутативным, задачам про апельсины в ящиках (например). Потому и появляются “===”, а также и используемые в теоретической математике “:=”, означающие не столько “равенство”, сколько определение. Что же про вариант (a-b) == 0, то тут, как минимум, ясно, что требуется ввести много дополнительных соглашений, чтобы определить вычитание. Особенно, для строк. Но и без строк в компьютерном представлении возникнут новые, занимательные эффекты, иногда полезные, иногда – неожиданные.
Вот и вернёмся к языкам программирования и представлению чисел в компьютерах. Известно, что уже в языке Python попытка признать (a-b) == 0 и a == b эквивалентными наталкивается на тот самый, занимательный, эффект:
import math a = math.pow(5, 55) b = 5 ** 55 print(a == b) print((a - b) == 0)
Эта нехитрая программа печатает следующий результат (Python 3.9, Debian 11):
False True
Так что здесь a хоть и не равно b, но зато (a – b) равно нулю. Что происходит? Происходит вычислительное сравнение, на которое влияет представление чисел внутри Python, переполнение и автоматическое (неявное) преобразование типов:
a == 2.7755575615628914e+38 b == 277555756156289135105907917022705078125
– это, вообще-то, весь фокус, записанный “в формулах”. Соответственно, если возводить в степень 15, то программа напечатает True и True, что соответствует арифметическим ожиданиям. Аналогичный эффект (True, True) даст, по другой причине, следующий вариант:
import math a = math.pow(5, 55) b = 5 ** 55 print(a == float(b)) print((a - b) == 0)
За простыми на вид компьютерными формулами часто скрываются хитрые трактовки и скрытые структуры, которые хоть и подразумеваются, но это подразумевание бывает с двойным (“==”), а то и с тройным дном (“===”).
Адрес записки: https://dxdt.ru/2023/12/23/11982/
Похожие записки:
- Модели вычислений и размерность пространства
- Дорисовывание Луны смартфонами Samsung
- Реплика: перемешивающие сети Google и фильтрация
- Десятилетие DNSSEC в российских доменах
- Техническое: ключи DNSSEC и их теги
- Синтезирование изображений смартфонами и "реальность фотографий"
- Маскирование криптографических ключей в памяти
- Реплика: программные "демультиплексоры" протоколов уровня приложений
- Атака GhostWrite на аппаратуре RISC-V
- Подпись и использование ключей из TLS-сертификатов для веба
- Замена смысла текстовых предложений
Написать комментарий