Следы звуков в кодах для LLM
В работе LLM (Large Language Models) используются токены, а не слова, как слова. То есть, процесс можно сравнить с изучением письменности, но без изучения языка. Для использования компьютерами, буквы, как символы, кодируются значениями байтов – это вполне привычная система.
Так, если взять ASCII, то символу (букве) L соответствует шестнадцатеричный индекс 0x4C. Тут есть множество философских моментов: во-первых, натуральное число 0x4C – это число, а не буква, так что, в большинстве компьютерных применений, 0x4C – вовсе не имеет отношения к букве L; во-вторых, для того, чтобы число указало на букву, всегда требуется внешняя структура – ASCII, в данном случае, – и система соглашений, определяющая, как минимум, метаязык и алфавит; в-третьих, компьютер, на котором работает LLM, “читает” именно байты, а не воспринимает буквы как буквы, то есть, как элементы, переключающие неизвестную компьютеру структуру, хоть бы это была и только таблица ASCII (тем более, что современные тексты используют Unicode – другое кодирование).
Числа, записанные в байтах, могут “быть буквами”, но могут и не быть. Буквы могут “быть звуками”, а могут и не быть. Хитрость в том, что сама по себе, без дополнительных соглашений, буква L никакой звук не обозначает, а обозначает, скажем, “длину стороны треугольника”, однако L может использоваться в записи звуков. (Да, речь только про фонетическое письмо.) Тут не так важно то, насколько фонетика вообще определяет язык, как то, что превращения букв при записи слов языка определяются, в том числе, превращениями звуков. Так что именно этот момент, – поднятие фонетической структуры из разных записей, – позволяет изучать происхождение и родство современных языков. Это максимально далеко и от ASCII, и от Unicode, самих по себе.
Слово “яблоко” не является яблоком, но “слово” является словом (или тоже нет?), однако ещё дальше от смысловых конструкций ASCII- или Unicode-таблицы, преобразованные в очередные наборы чисел. Всё это не мешает попыткам переносить следы способов записи смысловых конструкций, оставшиеся в корпусе обучающих текстов, в новый поток индексов (байтов), генерируемый LLM. И эти индексы пользователю предлагается считать буквами, потому что компьютером же можно преобразовать коды в изображения символов, которые пользователь начнёт читать как текст. “Большая” же идея, естественно, в предположении о том, что автоматический компьютерный перебор может воссоздать ту самую, внешнюю структуру.
Известно, что идея LLM выросла из методов атрибуции текстов: разным авторам свойственны разные словари (конкордансы) и стили комбинирования слов, связанные с привычной записью частей речи; если на основе текстов с известным авторством построить достаточно длинные “вероятностные цепочки” слов и их частей (последнее – необходимо для учёта морфологических особенностей), то можно будет строить предположения об авторстве для других текстов, сравнивая их цепочки с цепочками из базовой выборки. Это можно делать даже вручную, но компьютерная обработка несравнимо эффективнее. Переход к LLM начинается со следующего шага, на котором уже слова из словаря выбираются так, чтобы подходить к цепочкам, построенным на большой выборке текстов. Свидетельствует ли успешное исполнение сверхмощным компьютером перевернутого алгоритма атрибуции о каком-то “универсальном интеллекте”? Вряд ли.
Адрес записки: https://dxdt.ru/2024/09/20/13943/
Похожие записки:
- Apple и процессор радиоканала 5G
- Модели вычислений и размерность пространства
- Задержки пакетов, СУБД, TCP и РЛС
- Древнегреческие орнитологи и квантовые вычисления у Гомера
- "Почти что коллизия" и хеш-функции
- Частотность слов и ChatGPT в аннотациях
- Простой пример "про измерения"
- Предсказание погоды от Google AI
- Точки с запятыми в манускриптах и тексты Платона
- Компиляторы и ассемблер
- Мышиные ИК-сенсоры
Написать комментарий