Ресурсы: техническое описание TLS, LaTeX - в картинки (img), криптографическая библиотека Arduino, шифр "Кузнечик" на ассемблере AMD64/AVX и ARM64
“1 – Столько комментариев вы оставили в уходящем году” – пишет мне Habr с адресом @habr.com в странно отформатированном письме. Но я не помню, чтобы писал там комментарии “в уходящем году”, то есть, в 2024. У меня аккаунт на “Хабре” зарегистрирован в 2009 году. Довольно давно. И за прошедшее с тех пор время я написал там два комментария, а самый поздний из них – в 2023 году (а 2023 был “уходящим” до 2024).
(Редко нахожу даже минимальные причины что-то там комментировать. Но, конечно, влияние “Хабра” на ИТ-среду сложно не замечать, так что я несколько лет назад даже придумал термин: “Habr-driven development”. И зона habr.com подписана DNSSEC, что редкость.)
Комментировать »
Интересный аспект, непосредственно связанный с обобщёнными “квантовыми компьютерами”: влияние гравитационного замедления времени. Это достаточно новая тема, но уже определили, что практические “квантовые часы” чувствительны к гравитационному потенциалу Земли на дистанциях, измеряемых сантиметрами. То есть, замедление времени (time dilation), связанное с гравитационным потенциалом, соответствующий генератор частоты определяет при изменении высоты, предположим, на пару сантиметров. Тут, конечно, не очень понятно, что через что определяется: гравитация через замедление времени или наоборот, но это не означает, что данный эффект, – пограничный, грубо говоря, для квантовой механики и общей теории относительности, – нужно сразу отбросить.
Популярные изложения физики нередко определяют пространство для классической механики, с абсолютным временем, как “феномен”, к которому можно привязать оси, образующие кортежи чисел – читай, координаты точки в пространстве-времени: (t, x, y, z). Тут должно быть много оговорок про метрику, векторы и т.д. Но популярные изложения постоянно используют что-то вроде евклидова пространства, так что, наверное, понятно о чём речь. Потому что интереснее другое: редко кто при этом объясняет, почему бы не поступить наоборот, а именно – сказать, что совокупность свойств кортежей чисел это и есть то, что само задаёт пространство, а не описывает. (Что такое тензор? Это элемент тензорного произведения.) При этом, привычно добавляя в кортеж “время” в качестве “ещё одной обычной оси измерения”, можно учитывать, что с алгебраической точки зрения трёхмерное и четырёхмерное пространства заметно отличаются: например, в четырёхмерном пространстве добавляется ещё один правильный многогранник.
Однако, как бы там ни было, но в таком “блочном” пространстве-времени – нет времени. Почти что каламбур. Уж точно нет “хода времени” (совсем другой феномен, между прочим). Поэтому, с одной стороны, гравитационное замедление времени в квантовых часах может быть проявлением некоторого эффекта, блокирующего осуществление квантовых вычислений. Тогда придётся искать то ли какую-то особую “антигравитацию”, то ли “гиперплоское” место в пространстве-времени, где гравитация не мешает. Но, с другой стороны, может же выйти и наоборот: если есть какой-то способ проваливаться в разное “время” на уровне квантовых схем, то так и фантастическая схема с экспоненциальным повышением частоты начнёт срабатывать. Скажем, для завершения вычислений требуется количество тактов, эквивалентное двум триллионам лет, но это если считать по “кварцу” в настенных часах, а если считать по внутреннему квантовому времени, то по настенным часам выйдет одна секунда, не более. Нет, речь тут вовсе не про известный “парадокс близнецов”, поскольку гравитационное замедление времени – это другой эффект: никто никуда не летит на ракете, но изменяется гравитационное искривление где-то там на уровне ниже планковской длины.
Всё это фантастика. Время сложно определить. Понятно, что “ход времени” выглядит воображаемой категорией: в тех или иных часах, на стене или в экспериментальной установке, всё равно какой-то кварц или атомный генератор секунд. Как он срабатывает в заданной реальности – узнать по показаниям часов нельзя. Но если гравитационное замедление в масштабе пикосекунд кажется слишком маленьким, чтобы помешать квантовой реализации алгоритма Шора, то учитывайте, что в формулах, моделирующих квантовое преобразование Фурье, появляются несравнимо меньшие числа, и их необходимо учитывать, строя хронометраж.
Комментировать »
В 2017 году я писал на dxdt.ru про киберпанк и базы данных “умного города”:
“Предположим, есть база данных, в которой содержатся сведения о мгновенном расходе электроэнергии в домохозяйстве, привязанные ко времени, сведения собираются с “умных счётчиков”. К базе данных получают доступ хакеры, их цель – выяснить, по какому адресу находится стиральная машина, удалённый доступ к которой они уже получили ранее, в рамках целевой атаки. Метод, впрочем, довольно очевидный: ночью стиральную машину включают и выключают несколько раз, записывая время включения и выключения. На втором шаге – в базе данных электропотребления ищется соответствующая сигнатура (скачки потребляемого тока), а уже по ней определяется адрес, где установлен счётчик и находится стиральная машина.”
Комментировать »
Кстати, проверим на системе GigaChat метод из недавно упоминавшейся на dxdt.ru работы про оценку реального интеллекта LLM ИИ. Задача, как говорится, для школьника пятого класса:
“Семен был отправлен собирать урожай крупных ананасов. В первый день он собрал 12 крупных ананасов. Во второй день он собрал в три раза больше крупных ананасов, чем в первый, но восемь из этих ананасов оказались неспелыми. Сколько всего крупных ананасов собрал Семен за два дня?”
И ответ GigaChat (через официального Telegram-бота):
“Сначала определим, сколько ананасов Семен собрал во второй день. По условию задачи, он собрал в три раза больше, чем в первый день:
12 * 3 = 36
Однако из этих 36 ананасов восемь оказались неспелыми, поэтому вычтем их из общего количества:
36 – 8 = 28
Теперь сложим количество ананасов, собранных Семеном за оба дня:
12 + 28 = 40
Итак, Семен собрал всего 40 крупных ананасов за два дня.”
Метод прекрасно сработал. Ответ, очевидно, ИИ дан неверный – ананасов Семён собрал не 40, а 48 крупных.
Почему эта задача для пятого, а не для второго класса (условно)? Потому, что в ней, конечно, присутствует минимальная логическая особенность – упоминание числа, не имеющего отношения к арифметической сути: “но восемь из этих ананасов оказались неспелыми”. Это и есть упомянутый метод: в формулировку добавляется подстрока, содержащая похожие на основную часть слова и числа, но никак не влияющая на решение. Школьные уровни тут использованы лишь как иллюстрация.
Комментарии (2) »
Один из долгоиграющих примеров, позволяющих иллюстрировать искажения “физических теорий”, это, конечно “принцип неопределённости Гейзенберга”. Вот в русскоязычной “Википедии” по теме этого принципа не только умные слова про какие-то “некоммутрирующие операторы” написаны, но и сказано, буквально, следующее:
“Согласно принципу неопределённости у частицы не могут быть одновременно точно измерены положение и скорость (импульс)”.
Казалось бы, можно задуматься: а возможно ли вообще измерить какие-то такие параметры точно?
– Периметр шляпки этого гвоздя – один метр точно!
– А вы по орбитам электронов посчитали? А то у меня почему-то всё время три километра получается.
Скажем, не так давно был ещё единственный в мире механический артефакт, который весил абсолютно точно один килограмм. Потому что это был эталон килограмма из международного бюро. Ну так, с одной стороны, измерить его, в общепринятом смысле, все равно было невозможно – как вы станете измерять эталон? Это примерно как время определять через площадь секундной стрелки судового хронометра, упирая на то, что он в латунном корпусе.
С другой стороны, от эталона килограмма сейчас вовсе отказались, ибо фундаментальная физика измерений – это, всё же, про соотношения, а не про точность и тщательность сдувания пылинок. Отсюда, кстати, всего пара шагов до понимания упомянутого принципа неопределённости, но только не нужно идти в сторону “невозможной” точности “одновременных” измерений.
Что произойдёт с лабораторным прибором, которым экспериментатор попытается “точно измерить” импульс частицы, предварительно локализовав эту частицу в пространстве тоже точно? Видимо, из прибора пойдёт дым и отвалится стрелка, показывающая значение импульса. А всё потому, что нет эталона.
Конечно, проблема в том, что частица в исходной иллюстрации принципа неопределённости вполне явно подразумевается в виде “очень маленького синего шарика”. То есть, если частица – электрон, то сперва вводится существование электрона-шарика, с “точным импульсом и положением”, а потом утверждается, что, якобы, эти точные импульс и положение нельзя измерить. Физика, как бы, всё равно “классическая”, но вот введём запрет на одновременную точность – получится уже квантовая физика. Из чего, кстати, повсеместно выводится та самая мнимая “контринтуитивность”, которую потом используют в популярных статьях.
Принцип неопределённости Гейзенберга не запрещает одновременно измерять положение и импульс с любой доступной оборудованию и методу подсчёта погрешностей точностью. Он не про измерения шариков, а про связь результатов измерений. На уровень выше. Этот принцип задаёт интервалы вероятности для “измеримых” величин и, в частности, связывает один параметр с другим (например, условный “импульс” с не менее условными “координатами”) через шкалу, доступную экспериментатору: сжав шкалу для “пространства” – нужно ожидать расширения шкалы для “импульса”. Но данная модель не рассматривает тот же электрон как “маленький синий шарик”, не запрещает никаких “одновременных измерений”.
Интересно, что неравенства, используемые для записи параметров этого самого принципа неопределённости, содержат постоянную Планка. И вот значение этой постоянной не так давно стало подлинным рациональным числом. Это значение, сколь бы квантовым оно ни казалось с популярной точки зрения, теперь можно знать абсолютно точно: 6.62607015*10^(-34) J/Hz. Значение зафиксировали. Что, кстати, имеет непосредственную связь с отменой определения килограмма через эталон.
Впрочем, всю рациональность портит деление на π – ведь там “h с чертой”. Так что можно продолжать уточнять цифры десятичного разложения.
Комментировать »
В нестабильной версии браузера Chrome (Canary) обнаружили подозрительный новый флаг в настройках – описание флага наводит на мысль, что Google Chrome собирается проверять содержимое просматриваемых веб-страниц при помощи LLM ИИ. Конечно, предполагают, что для защиты пользователя от мошеннических страниц. Цитируемое описание флага гласит:
“Enables on device LLM output on pages to inquire for brand and intent of the page” (“Включает на устройстве вывод LLM для страниц, чтобы запросить тип и предназначение конкретной страницы”)
Смысл ускользает. Например, непонятно, что это за LLM и как она относится к устройству (заметьте, что отсутствует дефис в “on device”). Конечно, LLM ИИ может работать как в браузере, так и на серверах Google. Браузерная LLM (micro-large, да) может “советоваться” с LLM на серверах Google, передавая некоторое сжатое описание страницы. Это всё понятно. Как и то, что эксперимент могут и отменить. Но особенно интересны стратегические моменты.
Во-первых, это очередной шаг к тому, что браузер начнёт отмечать “фейкньюс” и сопровождать некоторые страницы не только предупреждением, но и сообщением от “факт-чекеров” и очередным указанием на Beleive in Science. Соответствующее сообщение, конечно же, сгенерировано при помощи ИИ, потому что “компьютер не может ошибаться”, а “нейросеть, способная рассуждать” ерунды не пришлёт – всё только в строгом соответствии с Правилами и Разрешениями. Во-вторых, браузер может же и поправить содержимое страницы, чтобы оградить пользователя.
Такие же функции можно было реализовать и десять лет назад, но тогда ещё не было тщательно подготовленного СМИ понятийного фундамента про AI/ИИ, да и на слишком многих устройствах просто не хватило бы вычислительной мощности.
Резонный вопрос: зачем вообще выводить веб-страницы с каких-то “несертифицированных узлов”, если можно генерировать при помощи ИИ различные страницы с нужным содержанием сразу в браузере по запросу пользователя? Вроде, и браузер отдельный, и контент индивидуальный. Удобно. В принципе, к этому поисковые системы уже движутся: не просто замкнутый “корпоративный веб”, но ещё и сгенерированный ИИ контент. Закукливание. Это, впрочем, идеальная схема, она не учитывает ключевых требований по наличию каких-то внешних изменений. Ну, грубо говоря, если пользователь ходит внутри сгенерированного корпоративного ИИ-веба, то исчезают и задача защиты этого пользователя, и задача сбора статистики по “неправильным страницам”.
Сложное направление.
Комментировать »
В продолжение записки про “короткие сертификаты” Let’s Encrypt. Сертификаты на шесть дней предлагается выпускать для того, чтобы уменьшить интервал времени, когда компрометация ключа представляет угрозу. Попробуем разобраться, что это вообще за событие такое – компрометация ключа, в контексте TLS для веба, и чем это грозит на практике для обычного веб-сайта.
Прежде всего – речь о компрометации серверного ключа, то есть, о раскрытии третьей стороне секретного ключа из пары, открытая часть которой указана в сертификате сервера. Сам TLS-сертификат – документ публичный, скопировать его может кто угодно. Если у этого “кого угодно” есть секретный ключ от сертификата, то он может выдать свой сервер за легитимный, предоставив сертификат, подписанный Удостоверяющим Центром (УЦ). В данном случае – УЦ Let’s Enncrypt. Однако тут есть очень много “но”.
Если ключ от сертификата скомпрометирован, то штатный метод реагирования состоит в немедленном отзыве сертификата. Технически, сертификат отзывает УЦ. Более того, правила позволяют УЦ отозвать сертификат даже по собственной инициативе, если, например, стало “достоверно известно о компрометации ключа” (не единственная возможная причина). Программы-клиенты, подключающиеся к веб-сайту, должны как-то узнать, что сертификат отозван. Существует два практических способа это сделать: OCSP и CRL.
OCSP. Online Cerificate Status Protocol (Онлайн-протокол [определения] статуса сертификата). Этот способ позволяет отправить запрос о сертификате специальному респондеру, который ответит, отозван сертификат или нет. Технически способ напоминает работу с веб-сервером. Оператором OCSP-респондера является сам УЦ или доверенная сторона, а ответ о статусе сертификата удостоверяется цифровой подписью. Адрес респондера указывается в составе сертификата. В практике Интернета OCSP работает очень плохо. Протокол может показаться простым, но поддерживать его УЦ очень сложно. Начиная с того, что, при правильном внедрении, получаем сервис, блокирующий доступ к внешним ресурсам: без ответа респондера клиент не должен бы подключаться по HTTP к узлу, который пытается аутентифицировать при помощи данного сертификата. Почему? Потому, что если OCSP-респондер недоступен, то, формально, клиент не может узнать, что сертификат был отозван. Очевидно, что никакого смысла в OCSP, если игнорировать недоступность респондера, нет: третья сторона, перехватывающая сетевой доступ и использующая скомпрометированный ключ, тогда может просто заблокировать сетевой доступ и к OCSP-респондеру, чтобы скрыть факт отзыва.
В предыдущем абзаце использованы обороты “при правильном внедрении”, “формально” и др. Это сделано не просто так: в вебе – OCSP принято игнорировать. Например, браузер Chrome давно не поддерживает этот протокол. Хитрости ситуации добавляет тот факт, что, поскольку оператор OCSP-респондера видит индивидуальный запрос о конкретном сертификате (серийный номер), знает имена, для которых сертификат выпускался, то он может сопоставить адреса и запросы, построив статистику посещения веб-ресурсов ничего не подозревающими пользователями. А это уже “угроза приватности”. Конечно, есть технология OCSP stapling, позволяющая встроить актуальный ответ OCSP-респондера о статусе сертификата непосредственно в ответ TLS-сервера, чтобы клиент не обращался к OCSP-респондеру. Но данная технология не особенно распространена.
Наличие OCSP-респондера недавно признали опциональным для УЦ, отразив это в требованиях CA/B-форума (это объединение организаций – УЦ и разработчиков браузеров, – которое определяет базовые требования для включения корневых ключей УЦ в браузерные списки доверенных). Let’s Encrypt планирует закрыть свои OCSP-респондеры в следующем году. (И это правильно, поскольку OCSP, так или иначе, не самый лучший вариант.)
Следующий способ, позволяющий узнать о факте отзыва сертификата, это CRL – Certificate Revocation List (список отзыва сертификатов). CRL – это подписанный УЦ (или доверенной организацией) перечень серийных номеров отозванных сертификатов. Простое правило гласит, что если серийный номер сертификата указан в соответствующем CRL, то сертификат был отозван. Адрес точки раздачи CRL указывается в сертификате. Клиент может скачать список отзыва (со всеми сертификатами) и проверить статус нужного сертификата по нему. В общем случае, “точка раздачи” не знает, сертификат какого ресурса пытается проверить клиент (есть экзотические оговорки, но мы их тут пропустим) – поэтому “приватность” сохраняется лучше. Проблема в том, что на практике CRL тоже проверяется далеко не всегда, поскольку точка раздачи является почти таким же блокирующим сервисом, как и OCSP. Какой смысл в наличии CRL, если недоступность CRL игнорируется? Правильно – никакого смысла.
Получается, что проверки отзыва сертификатов, фактически, нет, поэтому клиент не узнает, что сертификат был отозван и, вероятно, поверит в отозванный сертификат. Традиционная трактовка гласит, что “короткий” сертификат закончится быстро, а в закончившийся сертификат клиент верить уже не станет, что и поможет снизить угрозу. То есть, если сертификат выпущен на шесть дней, а ключи утекают “равновероятно”, то есть неплохие шансы, что сертификату для скомпрометированного ключа останется всего пара дней срока. Хватит ли этого подменяющей соединение стороне? Технически, подменить соединение и прочитать пароли/куки-файлы можно за доли секунды. Но нужно учитывать и тот факт, что ключ от сертификата может утечь с большой задержкой, но “долгий” сертификат всё ещё будет валидным.
Обратите, впрочем, внимание, что если новый сертификат был выпущен для того же ключа, то ситуация не меняется – скомпрометированный ключ подходит к новому сертификату. Естественно, это работает только в том случае, если о компрометации не было известно. Ну и если ключи не меняются каждый раз при выпуске нового сертификата.
Рассмотрим ситуацию подмены TLS-узла. Если для подмены выпускается сертификат, – тем или иным способом, – то речь уже идёт не о компрометации ключа и срок действия сертификата не особенно влияет: новый сертификат будет действовать, а подменный ключ от него – есть у подменяющей стороны по условиям задачи (см. историю с jabber.ru, например). То есть, короткий срок действия приводит к тому, что нужно быстро использовать новый сертификат, ну, или придётся выпустить ещё один подменный. Конечно, при длительном подобном перехвате заметить пачку подменных сертификатов проще, чем один, выпущенный на год. Но часто ли такое требуется? Часто ли подменные сертификаты вообще попадают в “область видимости”? Нет, не часто – это ответ на оба предыдущих вопроса.
Насколько частым является событие “компрометация ключа” в деятельности обычного веб-сайта? Это, что называется, вопрос из серии многогранных: на “обычном веб-сайте” секретный ключ хранится в обычном файле, в открытом виде, а файл лежит там, куда его записала неведомая утилита certbot. Спросите доброго инженера по сертификации СКЗИ (Средств Криптографической Защиты Информации) – и он вам скажет, что так хранимый ключ уже скомпрометирован. Спросите то же самое у строгого инженера по сертификации СКЗИ – и он вам ответит, что ключ был скомпрометирован ещё в тот самый момент, когда его сгенерировала исполняемая с правами суперпользователя неведомая утилита certbot, свойства и недокументированные возможности которой “не только не документированы, но и не установлены”.
Однако, на практике, пусть где-то и вздохнёт специалист ИБ, очередной раз выполнив проверку конвертов tamper-proof и сверив записи в журналах, а опытный админ железного сервера всё равно уверенно сложит секретные ключи от сертификатов в резервные копии, хранимые неподалёку от ежесуточных дампов памяти виртуальных машин, в которых соответствующие TLS-серверы исполняются.
Что поделать – такова практика веба. Естественно, ключ может оказаться скомпрометирован и без всякой утечки непосредственно из места хранения ключа: ошибки в ПО могут привести к тому, что будет сгенерирован нестойкий ключ или ключ утечёт в рамках штатного выполнения криптографических операций. Такое, к сожалению, случается не так редко, как хотелось бы. Наверное, в такой ситуации короткие сертификаты можно признать благом. Вот только на то вопрос и многогранный, чтобы рассмотреть и другие грани тоже.
Чтобы применить скомпрометированный ключ в вебе, применяющая сторона должна перехватить трафик в направлении веб-сайта. Для важных сервисов, типа веб-почты Gmail или систем дистанционного банковского обслуживания, эта угроза подмены довольно серьёзная, поэтому можно рассматривать целевые атаки, когда трафик перехватывается ближе (в сетевом смысле) к точке подключения конкретного пользователя. Однако в других случаях (опять вспомним про jabber.ru) – перехват проводится рядом с точкой подключения атакуемого “обычного веб-сайта”. Но такой перехват позволит без проблем выпустить подменный сертификат, если вдруг ключ “скомпрометировать не удалось”. Так что практическая ситуация не такая прямолинейная, как можно подумать.
А вот что можно сказать точно, так это то, что сертификаты, выпускаемые на несколько дней, привяжут всякий ресурс к сервису выпуска сертификатов. Внедрение требования о коротких сертификатах в основные браузеры – приведёт к тому, что многие и многие “производные браузеры” получат это же требование автоматически. Просто потому, что мало кто рискует вмешиваться в “ядро валидации” сертификатов. И требование о коротком сроке действия начнёт работать даже для “собственных корней”.
Обратите внимание, что один из законодателей моды в данной области, – Google, – сейчас выпускает сертификаты для своих доменов от собственного УЦ. И эти сертификаты уже имеют достаточно короткий срок действия – три месяца. Если добавить сюда инициативу Let’s Encrypt с шестидневными сертификатами, то остаётся слишком мало сомнений в том, что требования браузеров к сроку действия TLS-сертификата начнут теперь сокращаться всё быстрее и быстрее.
Комментировать »
Хоть и совсем не планировал, но всё же собрался с силами и, прямо к концу года, подготовил и выпустил обновление технического описания TLS: очень меня беспокоило то, что скоро десять лет регулярным обновлениям описания, а в текущей версии (2023 года, да) вообще не было упоминания ML-KEM; что, с одной стороны, простительно, так как в 2023 году ещё и официального названия такого не было у данной криптосистемы, – было Kyber, – но, с другой стороны, промелькнувшую Kyber768 читающему описание может быть сложно сопоставить с современной ML-KEM.
Поэтому основное изменение новой версии – это раздел про криптосистемы с постквантовой стойкостью в TLS, который я переписал с учётом того, что X25519+Kyber768 в основных браузерах стала ML-KEM+X25519. Ну и ещё внёс в нескольких местах небольшие исправления, актуализировав текст – например, про то, что RSA не рекомендуется в качестве средства обмена ключами.
Комментировать »
Пишут, что свежие рекомендации профильного агентства правительства Австралии требуют отказаться от современных распространённых криптосистем (ECDH, ECDSA и др.) и перейти на постквантовые криптосистемы совсем скоро – к 2030 году. Занятно, что в этих рекомендациях запрещают SHA-256 в HMAC, но оставляют AES. Это тем более странно, что отказ от SHA-256 мотивируют традиционным развитием квантовых компьютеров. При этом, конечно, ничего не сказано про алгоритмы, используемые для защиты по высшим категориям (TOP SECRET).
Нетрудно посчитать, что знаменитый 2030 год планируется уже через пять лет. С одной стороны, пять лет это очень мало. С другой стороны – пяти лет может оказаться достаточно для того, чтобы появились квантовые алгоритмы для взлома, скажем, криптосистем на кодах и решётках. (Но и квантовые алгоритмы для AES – тоже нельзя исключать.) Естественно, алгоритмы будут не менее теоретическими, чем алгоритм Шора, и смогут сработать только на “гипотетических квантовых компьютерах”, но это всё равно потребует, как минимум, пересмотра рекомендаций, а как максимум – разработки новых криптосистем. Впрочем, всегда можно просто увеличить длину ключей (как долгие годы и делается с RSA).
Комментировать »
Достаточно давно сформировалась тенденция к сокращению срока действия TLS-сертификатов для веба. Let’s Encrypt в следующем году обещает шестидневные сертификаты. То есть, TLS-сертификаты, срок действия которых будет около шести суток (ну, плюс какие-то интервалы в несколько часов, видимо). Цитата:
[…] short-lived certificates. Specifically, certificates with a lifetime of six days. This is a big upgrade for the security of the TLS ecosystem because it minimizes exposure time during a key compromise event. ([…] короткоживущие сертификаты. Точнее, сертификаты со сроком действия шесть дней. Это большое обновление безопасности для TLS-экосистемы, поскольку оно минимизирует время действия уязвимости в случае компрометации ключа.)
Собственно, основная публичная мотивация, стоящая за этим движением – это то, что отзыв сертификатов в TLS для веба и браузеров, фактически, не работает: наладить его так и не удалось. (И с этим – не поспорить.) Ну, понятно, что такой расклад полностью меняет реальность для коммерческих УЦ – от разового выпуска сертификата нужно переходить к предоставлению непрерывного сервиса “обновления” (а в рамках “технологической зависимости” это означает, что нужно реализовывать ACME, который, почему-то, считают “стандартом”).
Кстати, так как браузеры давно допускают только сертификаты, которые действуют не дольше тринадцати с небольшим месяцев, то отдалённо похожая услуга уже есть – “абонемент” на продление годовых сертификатов, чтобы в сумме получилось два или три года. Впрочем, если и браузеры перейдут на шестидневные сертификаты, покупка подобных “абонементов” потеряет смысл.
Это нововведение Let’s Encrypt, не сомневайтесь, прямо означает, что браузеры, следом за Chrome/Chromium от Google, постараются оперативно перейти на короткие сертификаты, запретив срок действия дольше месяца (например).
Комментировать »
Воскресное чтение манускриптов. А точнее – наблюдение над “вырезками” и рыбами. Так, из страниц манускрипта Vat.Gr.1990 (Ватиканская Апостольская библиотека), датируемых 10 веком, кто-то сделал немало вырезок, забрав себе орнаментальные виньетки, разделявшие статьи. Пример, сопровождающийся рисунком рыбы, на скриншоте (это вступление и начало текста одного из трудов, приписываемых Иоанну Златоусту):
Заметьте, что изображение рыбы вырезать не стали.
Вот пример с уцелевшей виньеткой и рыбой из того же манускрипта в начале другой статьи (написано, что это Слово Леонтия, пресвитера Константинопольского, на Пятидесятницу – изображения рыб, естественно, тут имеют конкретный смысл):
Удаление виньетки привело к потере части текста на обратной стороне листа. Можно было бы подумать, что удаляли, по соображениям цензуры, именно часть текста (такое бывает: “данные удалены”, как говорится), но нет – тут почему-то более или менее аккуратно вырезаны именно виньетки. Вряд ли виньетки содержали закодированные послания, по типу QR-кода. Хотя, всякое возможно в средневековом скриптории. Как бы там ни было, но возникшие лакуны в текстах, где возможно, потом заполняли по другим копиям или по переводам, например, латинским. Но если орнамент виньетки содержал код послания, то это послание потеряно.
Комментировать »