Предположим, что некий летательный аппарат, пусть это будет крылатая ракета, использует навигацию по карте высот, а высоты в полёте измеряет при помощи радара (который, для упрощения картины, можно считать радиовысотомером). Логика известна: в памяти системы управления находится опорная карта, содержащая контуры (по высоте) местности, над которой проложен маршрут; в некоторые моменты времени система управления измеряет окружающую действительность при помощи радара, зондирующие импульсы которого позволяют построить карту высот, определяет положение, сверяя данные с картой в памяти, и вычисляет коррекцию для инерциальной навигационной подсистемы (это важный момент: инерциальную навигацию, как основной и автономный источник данных о местоположении, пока что не отменяли).

Как поставить помеху данной системе? В теории, можно задавить принимающий тракт радара мощной широкополосной помехой. Эффективность источника такой помехи будет сильно зависеть от его расположения – диаграмма направленности антенны, находящейся на ракете, кардинально ослабляет сигнал, принимаемый с направлений, которые не совпадают с текущим азимутом обзора радара. Так что оптимальный вариант размещения источника помехи – на земле, близко к точке, в которой находится ракета. Что, само по себе, уже весьма затруднительно, да и не имеет особого смысла: проще ракету сбить, раз она всё равно рядом. При этом, подавляющая помеха лишает систему наведения канала, используемого для коррекции, соответственно, если измерить контур “подстилающей поверхности” не удалось, то ракета продолжает полёт по маршруту дальше, с возросшей погрешностью. Если в какой-то момент помеха перестанет глушить радар (например, помехопостановщик отстал), то накопившуюся погрешность система тут же исправит. Современные инерциальные системы очень точны, так что не стоит рассчитывать, что отклонение будет очень большим. Памяти на борту достаточно, поэтому предполагать, что, как в 70-х годах прошлого века, ракета достаточно быстро вылетит за пределы опорной карты – тоже не приходится. Поэтому, даже если оставить за рамками обсуждения оптические системы, простая подавляющая помеха не обладает нужной эффективностью по совокупности параметров.

Более хитрая, активная помеха могла бы влиять на бортовой радар, приводя к искажению измеряемых параметров: то есть, ракета увидела бы другой контур, другой рельеф. Тогда ракету можно плавно увести в произвольную точку на карте. Логика схемы аналогична спуфингу GPS: там подменяются сигналы спутников, что приводит к сдвигу вычисленных координат; здесь – сигнал от рельефа. В теории, действительно, возможно сформировать на приёмной антенне радара такую картину, которая соответствует изменённому, “подставному” рельефу. На практике – потребуется знать очень много дополнительных параметров. Среди этих параметров: точное положение ракеты в момент времени, для которого вычисляется помеха; характеристики сигнала радара, его состояние в момент, когда сигнал помехи достигнет антенны. Заметьте, что так как на борту ракеты присутствует очень точная инерциальная система навигации, то знать положение ракеты тоже необходимо не в какой-то произвольный момент времени, предшествовавший генерации помехи, а именно в тот момент, когда помеха достигнет радара. То есть, в системе координат помехопостановщика, в будущем, пусть и удалённом от настоящего всего лишь на миллисекунды. Кроме того, как ни странно, потребуется информация о параметрах карты в памяти ракеты – в противном случае, как и для подавляющей пассивной помехи, бортовая система управления получает возможность определить, что радар вышел из строя, так как он возвращает заведомо ошибочные данные, которые не совпадают ни с каким фрагментом опорной карты. И если все эти сведения о положении ракеты и её внутреннем устройстве имеются, то нет смысла в помехопостановщике: имея точные данные о местоположении ракеты – её проще сбить противоракетой; ну или, например, остановить заградительной сетью, доставленной беспилотником, раз, очевидно, имеется подавляющее техническое превосходство над стороной, которая ракету запустила.

Естественно, системы наведения сейчас устроены сложнее, используют не только данные о рельефе, измеряют их не только радиовысотомером (кроме очевидной и ненадёжной GPS, есть пассивная оптика, магнитное поле). Всё это значительно усложняет задачу постановки активной уводящей помехи.



Комментарии (4) »

Одним из способов активной “отстройки от помех” РЛС может являться использование нескольких зондирующих импульсов (сигналов) – в эфир излучается несколько сигналов, а для работы радаром используется только один из них, другие служат в качестве маскировки. Я писал об этой схеме ранее. Основная идея состоит в “запутывании” помехопостановщика: он вынужден тратить ресурсы на обработку всех принятых сигналов и постановку им помех, а это нагружает и вычислительную систему, и передатчики.

Конечно, для вычислителей современных помехопостановщиков нет большой разницы в том, нужно ли обработать один сигнал или пять. Проблема есть для передатчиков, но и она не является непреодолимой: в конце концов – независимые передатчики сейчас ставят в антенные решётки сотнями и тысячами. Так что если радар желает запутать помехопостановщик, он должен не только излучать десятки сигналов, но и постоянно менять их кодировку. Несомненно, тут помогут современные методики “размытия” и сокрытия зондирующего сигнала (LPI – Low Probability of Intercept): в предельном случае LPI-сигнал неотличим от обычного шума в радиоэфире, то есть, помехопостановщику нужно анализировать сразу “тысячи кандидатов в сигналы радара”, которые он вылавливает из шума.

Если помехопостановщик всё же сумел выловить сигнал и попробовал поставить ему активную помеху, радар должен как-то среагировать в ответ (например – замолчать, да). Предположим эта реакция служит признаком успешного применения помехи. В таком случае радар, обнаружив работу активного помехопостановщика, мог бы заранее имитировать некие “сбои”, как будто помехи успешно мешают его работе. А на самом деле, это не более чем маскировка, направляющая операторов средств РЭБ по ложному следу. И вот операторы могут именно так и подумать. И тоже заранее. Поэтому они ставят ложные помехи, а помехи настоящие – радар принимает за цели и успешно рисует на экранах. Тут и начинается рекурсия, а также – теория игр.



Comments Off on Помехи, помехопостановщики и рекурсия

Интересно, что в практике радиоэлектронной борьбы (РЭБ) ничуть не меньшее, чем мощность передатчиков, значение имеет вычислительная мощность, вместе с математическим обеспечением (это алгоритмы и программы). Сейчас приходится слышать, что, мол, у передатчиков помех недостаточная мощность для того, чтобы противодействовать “большим” РЛС (например, используемым на штатовском эсминце). Но попытка просто задавить приёмники РЛС мощным излучением – это прошлый век РЭБ. Для современных РЛС, по причине их глубинной цифровой природы, такая примитивная схема не работает, если, конечно, не сжигает приёмный тракт вместе с материалом антенны в буквальном, физическом смысле.

А вот интеллектуальную помеху можно поставить при помощи передатчика относительно малой мощности. Ведь РЛС в штатном режиме должна принимать очень слабые сигналы, представляющие собой отражённые зондирующие импульсы. Постановщику помех тут проще: он и принимает сигналы, прошедшие путь только в одну сторону, и излучает помеху на тех же условиях. (Да, естественно, особенно продвинутые решения сами используют зондирующие сигналы, но это отдельная история.)

Для того чтобы успешно генерировать активные интеллектуальные помехи, нужны мощные вычислители, которые, действуя по столь же необходимым качественным алгоритмам, быстро “раскрывают” сигнал и формируют помеху. И тут важны не только методы обработки сигналов, но и теория игр, как одна из математических основ организации РЭБ в современных условиях.

Кстати, пара ссылок по теме:

“Малозаметные” радары – преимущество приёмника;
Интеллектуальные помехи комплексам ПВО.



Комментарии (1) »

U. S. ArmyВновь приходится слышать утверждения, что невозможно “вывести из строя комплекс ПВО” при помощи передачи в адрес его РЛС особого сигнала помехопостановщиком. Мотивировка примерно такая: “РЛС служит только для измерения расстояния до цели, воздействовать на комплекс через неё невозможно; вычислительные машины комплекса не подключены к Интернету, их тоже не достать”. В реальности, к сожалению, всё не так просто. Я уже писал на эту тему ранее, в этот раз добавлю пару детальных примеров.

Для начала, случай из моей практики, не имеющей отношения к комплексам ПВО. Однажды мы разрабатывали систему автоматического анализа изображений, для некоторой коммерческой аппаратуры. В задачи системы входил разбор поступившей с видеокамеры картинки, распознавание и подсчёт неких объектов. Как вы понимаете, “видеокамера служила только для получения картинки”. На очередном этапе отладки неожиданно выяснилось, что при наблюдении видеокамерой некоторых сцен – программная часть, реализующая анализ изображения, “падает”, в результате критической ошибки. К счастью, ситуация довольно хорошо воспроизводилась, поэтому, при помощи отладчика, удалось выяснить, что данные изображения, в момент их разбора одной из процедур, приводили к порождению большого числа (миллионы) мелких объектов в памяти компьютера. Построение индекса объектов, конечно, было реализовано с мелкой и достаточно традиционной ошибкой – переполнялся буфер, что и приводило к сбою. При этом, в случае подавляющего большинства других изображений, ничего подобного не возникало, так как ситуация с порождением миллионов объектов, вообще-то, оказалась довольно редкой: подходящее изображение попалось чисто случайно.

Собственно, в этой истории нет ничего уникального: практически все программно-аппаратные системы, работающие с реальностью, сталкиваются с тем, что некое непрограммное воздействие извне – будь то подходящая “картинка”, громкий звук или неожиданное ускорение, – приводит к аварии. Комплекс ПВО – не исключение. Программы для комплексов разрабатывают такие же инженеры-программисты, как и те, которые работают с коммерческими системами реального времени. Думаю, миф о том, что комплекс – изолированная система, сложился в головах не чуждых программирования и информационных технологий людей, которые, при этом, никогда не имели дела с разработкой систем управления, а ограничивались “электронными таблицами” и базами данных.

Перейдём к комплексам ПВО. Понятно, что активная система РЭБ может сформировать такую помеху, такой сигнал, который временно выведет вычислительные системы РЛС из строя, использовав ту или иную ошибку в программном коде. Ошибка, при этом, может считаться и не ошибкой вовсе, а особенностью, поскольку в практике применения разработчикам с её проявлением сталкиваться не приходилось. Например, рассуждая сугубо теоретически, можно представить следующую ситуацию: для индикации и сопровождения целей программное обеспечение циклически вычисляет их координаты в некоторой собственной системе; РЛС при этом проводит подсвет разных целей, перемещая луч; задача активной помехи состоит в формировании ложной цели, которая, будучи поставленной на сопровождение, начнёт давать отметку, противоречащую текущему положению луча РЛС. Возникшая в программе, после преобразования координат, конфигурация переменных не была предусмотрена программистом – пожалуйста, получаем глобальный сбой, придётся перезапускать.

Современные комплексы ПВО, оставаясь системами реального времени, имеют достаточно сложные и, в какой-то мере, гибкие программы управления. Но если речь идёт о старых советских комплексах, например о тех же классических “Буках”, то они работают по жёсткой и весьма простой временной диаграмме, что сильно упрощает получение атакующей стороной данных о том, в каком состоянии находится комплекс, что он будет делать в следующую миллисекунду.

Почему сложные активные атаки РЭБ не случались раньше, а о них рассуждают только сейчас? Всё просто: двадцать лет назад, и ранее, во-первых, не было элементной базы, которая позволила бы реализовать подобный помехопостановщик. Речь, заметьте, не столько о центральных арифметических процессорах и памяти, сколько о приёмо-передающих элементах и специальных сигнальных процессорах. Во-вторых, на перенос теоретического математического аппарата в практическую электронику требуются время, а сам нужный прикладной математический аппарат мог появиться только после накопления опыта взаимодействия с системами ПВО. Ну и в-третьих, да, огромная вычислительная мощность оказалась доступной “в поле” только относительно недавно.

Дополнение: в комментариях верно заметили, что для эффективного анализа ошибок (или особенностей) в работе комплекса ПВО нужен сам комплекс, либо образцы программного обеспечения. Это так. Однако, в теории, можно выявить потенциальные дефекты и особенности внешним наблюдением, не имея прямого доступа к самой системе. Особенно это касается старых комплексов, которые устроены по хорошо известным принципам, выдают детали внутренней работы через побочные каналы и имеют небольшое пространство состояний (что упрощает моделирование). А вот и старая записка по этой теме.

(Кстати, записка по теме – активация аппаратных закладок.)



Комментарии (6) »

Что касается очередного авиарейда Израильских ВВС на территорию Сирии, в разрезе ПВО и РЭБ – поделюсь тематическими ссылками на прошлые записки dxdt.ru:

И даже вот: радиолокация и уязвимости DNS.

Вообще, уже много лет очевидно, что в преодолении ПВО силами РЭБ важную роль играют правильная математическая подготовка, мощные вычислители, добротная информационная сеть. Если в этих областях есть технологическое превосходство, то появляется существенное преимущество.

(Напомню, что на dxdt.ru есть целый раздел про РЛС.)



Комментарии (4) »

Как-то я писал о том, что, например, комплекс ПВО не является “изолированной” вычислительной системой, а, напротив, работает с данными, поступающими извне. Это означает, что состоянием комплекса можно манипулировать, создавая активные помехи (так выстраивается один из путей активации аппаратных закладок, если таковые имеются в вычислительных системах).

Занятно, что стороны, атакующей комплекс, могут быть подробные сведения о его устройстве (закупили образец). В таком случае, на стороне помехопостановщика можно построить математическую модель комплекса. Наличие такой модели позволяет построить некий интерфейс, автоматически подбирающий помехи таким образом, что аппаратура комплекса переходит в заданное оператором помехопостановщика состояние. Тут в качестве “канала управления” служат сигналы помехопостановщика, а в качестве обратной связи – “ответные” сигналы самого комплекса, в том числе внутренние, если их (или их следы) возможно принимать. Оборудование и сопутствующие системы можно разместить на борту самолёта РЭБ. Понятно, что такой интерфейс нужен для ведения эффективной “игры” против системы ПВО на уровне управляющих ей людей.

Да, добротно сконструированный комплекс ПВО, которым управляют опытные специалисты, не должен бы впадать в какие-то хорошо предсказуемые другой стороной состояния. Ну или хотя бы не должен сигналить в эфир о том, чем в данный момент заняты внутренние радиоэлектронные системы.

Так вот, вопрос в том, какое из двух только что приведённых теоретических построений (об управлении активными помехами и об устойчивом управлении комплексом) окажется ближе к реальности. Особенно в случае с устаревшими системами ПВО.



Комментарии (5) »

В прошлой заметке обсуждаются “малозаметные” радары. Занятно, что в типичной ситуации, когда с одной стороны “играет” радар, и его задача обнаружить цели, но не быть обнаруженным, а с другой стороны – “играет” детектор-приёмник, и его задача обнаружить радар, у детектора есть целых два серьёзных преимущества.

Во-первых, сторона с радаром не знает, где именно находится приёмник, но, по правилам игры, должна сканировать большой сектор пространства. Поэтому рано или поздно “подсветит” лучом приёмник. Во-вторых, приёмник-детектор заведомо получает гораздо большую энергию от передатчика радара, чем приёмник самого радара. Думаю, понятно почему: радар принимает отражённый сигнал, который, даже в самом лучшем случае, угасает пропорционально квадрату расстояния на пути обратно от цели; а приёмник-детектор слушает “прямой” сигнал. Кстати, как известно, именно поэтому хороший детектор может использовать информацию не только из радиосигнала основного лепестка диаграммы направленности антенны, но и из боковых лепестков, а равно и отражённые окружающими объектами сигналы радара – даже в последнем случае положение приёмника может в энергетическом смысле оказаться не хуже, чем у скрывающегося радара.

В общем, приёмнику играть несколько проще. Хотя, да, у радара есть то преимущество, что ему заведомо известны характеристики собственных сигналов, но это уже несколько другая история.

А вот в случае со скрытной радиосвязью между самолётами – ситуация иная: никаких заведомых преимуществ у перехватывающего сеанс связи приёмника нет. Скорее наоборот, все преимущества у тех, кто обменивается радиосообщениями. Они знают и время передачи, и параметры сигналов, могут согласованно использовать узконаправленные антенны.



Комментарии (3) »

Сейчас принято связывать с малозаметными истребителями “малозаметные” радары (LPI – англоязычная аббревиатура). Эти радары используют разные методы, снижающие вероятность обнаружения факта их работы детекторами. Да, понятно, что для малозаметного самолёта простой радар не подходит: “громкие” зондирующие импульсы испортят всю малую заметность. Но ведь сама проблема шире и едва ли не старше, чем “Стелс”. Скрытность работы важна не только для бортовых РЛС истребителей.

Например, существуют особые загоризонтные РЛС, предназначенные для решения разных задач, среди которых есть и наблюдение за воздушными, морскими целями, или, скажем, за стартом и полётом межконтинентальных ракет. Загоризонтные РЛС на то и загоризонтные, что будучи расположенными на земле – просматривают пространство далеко за горизонтом, расстояния измеряются сотнями и тысячами километров. То есть, такие РЛС, возможно, зондируют чужую территорию. При этом решение задачи мониторинга подразумевает, что станции работают непрерывно. Естественно, если работа такой РЛС в эфире обнаруживается другой стороной во всех деталях самыми простыми техническими мерами, то тут же возникает идея с постановкой помехи, тем более, что радар работает на большие расстояния. А помеха, понятно, может лишить сам радар практического смысла. Поэтому и тут разумной практикой оказывается использование специальных сигналов, снижающих вероятность обнаружения работы станции и, – что не менее важно, – затрудняющих раскрытие структуры сигналов и алгоритмов их формирования. Та же ситуация снижения заметности работы РЛС, но при этом никаких истребителей. Понятно, что практически любой радар станет более полезным, если его работу в эфире сделают “малозаметной”, но не для всех сценариев применения РЛС затраты на снижение заметности оказываются оправданы. Загоризонтная разведка – сценарий как раз подходящий.



Комментарии (19) »

Вспомним про штатовский беспилотник RQ-170, который оказался захвачен в Иране. Что касается автоматики и помех GPS. (Как пишут, именно постановка активной помехи сигналу GPS позволила “приземлить” сей секретный летательный аппарат.) Понятно, если связь ЛА с центром управления потеряна (заглушили), то аппарат переходит исключительно на автопилот. Кстати, сейчас даже готовые “коробочные” автопилоты (с поддержкой GPS, да), доступные энтузиастам-любителям, умеют осуществлять полёт по маршруту, заранее записанному в память бортового компьютера. То есть, не обязательно аппарату “ложиться в циркуляцию” и ждать восстановления связи. Пусть он летит себе на базу автономно.

Но самый интерес в другом: очевидно, что на борту есть инерциальная навигационная система. Если предположить, что действительно получилось военному GPS поставить активную помеху, уводящую координаты в нужном направлении, то ключевую роль будет играть то, каким образом несколько источников навигационной информации увязываются между собой бортовым компьютером ЛА. Если есть только инерциальная система и GPS, то при возникновении существенного расхождения между ними приоритет разумно отдать всяким гироскопам, поскольку они привязаны к более надёжным физическим основам. С другой стороны, условные гироскопы тоже могут поломаться (маловероятно, между прочим). Предположим, сигнал GPS постоянно используется для коррекции данных инерциальной системы. Тогда, если активная помеха построена таким образом, что действует в рамках типичного, допустимого, отклонения инерциального автопилота, возникает ситуация, позволяющая плавно увести аппарат куда требуется. При этом критического расхождения данных обнаружено не будет. Если действовать подобным образом, то уводящие “дельты” координат нужно вводить, так сказать, по одной из осей. Так проще не выскочить за пределы допустимой, с точки зрения ПО беспилотника, погрешности.

Впрочем, на борту аппарата может оказаться подробная карта местности, над которой он пролетает, и точный высотомер. Тогда к наведённым ложным сбоям инерциальной системы добавляется расхождение траектории с картой высот. Однако если ЛА пролетает над пустыней, то с изменением высот возникают понятные трудности. Да и вообще, не факт, что разработчики учитывают эти самые высоты подобным образом.

Может показаться, что для построения точной активной помехи нужна подробнейшая информация об устройстве данного конкретного беспилотника. В реальности же маловероятно, что разработчики ПО для секретного аппарата используют какую-то столь же секретную математику – алгоритмы систем автоматического управления похожи друг на друга, основа там общая, и наверняка использовали имеющиеся наработки. Если атакующая сторона с помехой несколько раз потренировалась, то у неё есть нужные калибровочные коэффициенты, полученные опытным путём. В общем, теоретически всё выглядит гладко.

Но относительно практики возникают, конечно, определённые сомнения. Может, там есть какая-то двойная игра и RQ-170 специально сдали? Посмотрим.



Комментарии (31) »
Навигация по запискам: Раньше »