Современный смартфон уже содержит акселерометры и (или) гироскопы, планируется оснащать смартфоны и более продвинутыми датчиками и сложными сенсорами, вплоть до химических анализаторов. Получается сеть из приборов, которые могут измерять параметры окружающей среды. (Заметьте, что некоторые параметры смартфон может измерять и сейчас: например, уровень шума.) Идеи о том, что подобная распределённая сеть может обнаружить немало интересного – довольно старые: несколько лет назад предлагалось массово использовать смартфоны с датчиками ионизирующих излучений для мониторинга радиационной обстановки.

Предположим, что популярная модель смартфона передаёт собранные данные для анализа в центр, находящийся под контролем производителя (сейчас это принято называть “загрузить в облако”). Тогда производитель получает неплохой источник информации о том, что происходит в окружающей среде по всему миру. В смартфоне есть точные часы и привязка к местности (GPS), а данные можно передавать в режиме онлайн.

При необходимости данные измерений можно передавать скрытно, используя стеганографию. Объёмы информации там небольшие, поэтому скрытый сигнал можно подмешивать в обычный IP-трафик. Требуется только односторонняя передача, а значит, снимать полезную нагрузку можно на любом узле, через который проходит трафик. Вовсе не обязательно, чтобы данные прямо отправлялись на некоторый специально выделенный сервер, с заданным адресом. Это могут быть обычные пакеты, адресованные на безобидный “хостинг картинок”. Впрочем, если не предпринимать дополнительных мер по защите, то возможность такой передачи данных может быть обнаружена путём анализа программного кода. Сильно усложнить анализ может правильно выбранное аппаратное решение: ведь датчики должны взаимодействовать с прочими компонентами телефона, иначе в них нет смысла. При этом, вопрос сокрытия передачи данных в существенной мере касается того, как эти датчики связаны с прочей аппаратной частью.



Комментарии (2) »

Весной этого года ФБР спорило с корпорацией Apple по поводу “взлома” защиты аппаратов iPhone, для того, чтобы получить доступ к одному из таких аппаратов (АНБ из каких-то своих соображений заявило, что помочь не может). Обсуждались самые разные способы получения доступа, в том числе, при помощи физического копирования модуля памяти устройства (NAND mirroring). Почему-то насчёт этого варианта высказывались сомнения относительно реализуемости. Сергей Скоробогатов (Sergei Skorobogatov) продемонстрировал на практике, что задача решаема даже без использования сверхсложного лабораторного оборудования: The bumpy road towards iPhone 5c NAND mirroring – в работе подробно рассмотрены все этапы, начиная от извлечения чипа и до реализации перебора пароля доступа с использованием клонированной памяти (Apple, оказывается, использует некоторые методы аппаратной защиты от такого клонирования, но их можно обойти). Весьма интересно, рекомендую.



Comments Off on Ссылка: копирование памяти iPhone (NAND mirroring)

LorryВ дополнение к “перемотке” действительности назад, добротные очки дополненной реальности могли бы иметь и функцию “перемотки” вперёд, то есть, функцию предсказания событий. Конечно, предсказание тут весьма условное. Скорее – это прогноз. Скажем, мимо пользователя очков проезжает грузовик, который должен пересечь лужу, находящуюся у края проезжей части – поток воды из лужи может обрызгать пользователя, в том числе, залить и испортить очки. Центральный процессор очков дополненной реальности (или носимого компьютера, взаимодействующего с очками) вычисляет водяную угрозу заранее и выводит предупреждение, дополняя информирующими знаками и грузовик, и, собственно, лужу.

Использование даже простых математических моделей поможет предсказывать траектории движения объектов, присутствующих в окружающей действительности, и строить прогноз относительно конфигурации этих объектов в следующий момент времени. Надо заметить, что возможные траектории движущихся объектов, особенно, если это летящий мяч или нечто подобное, отлично умеет вычислять человеческий мозг (до сих пор не совсем ясно, как он это делает). Но, во-первых, мозгу для повышения точности нужна практика, и, во-вторых, очки могли бы обсчитывать объекты, оказавшиеся вне поля чёткого зрения, вне области внимания, что добавило бы пользователю информации о динамических свойствах окружающей среды (не факт, что сильно полезной информации).



Комментарии (2) »

Сейчас доступно огромное количество навигационной техники, работающей на основе глобальной спутниковой системы. Точно узнать своё местоположение может каждый, специальных навыков не требуется. Между тем, интересно представить, как может быть устроен подобный по простоте применения навигатор, работающий без спутников GPS. И без использования наземных радиопередатчиков с известными координатами. (Мало ли – вдруг инфраструктура сломалась?)

Итак, речь о достаточно компактном электронном устройстве, которое выполняет функции типичного современного GPS-навигатора (карты, экран, показывает местоположение в реальном времени), но при этом не зависит от рукотворных внешних источников навигационной информации. Понятно, что электронная начинка, операционные системы подходят от современных навигаторов. С исходными картами тоже более или менее понятно: загрузили файлы в память, используем. Конечно, карты будут устаревать. Это особенно вероятно в ситуации, приведшей к разрушению важных для Цивилизации элементов инфраструктуры – GPS, сотовой связи. Они явно отключились неспроста. Но леса, реки, холмы, поля и озёра – заведомо остаются на своих местах. Как и многие здания, кстати. Да и прочие изменения происходят не столь быстро, чтобы картографические файлы оказались совсем бесполезны.

Прежде всего, навигатор должен иметь автономные высокоточные часы. Это основа. Вполне достижимая. Кроме того, для работы в реальном времени (запись траектории движения, информирование о тех или иных “точках интереса”) однозначно потребуется не менее автономная, чем часы, встроенная система инерциальной навигации. Гироскопы, акселерометры. Датчики такие есть, встроить их в корпус компактного прибора тоже возможно. Естественно, нужен и компас. А точнее – хорошие датчики магнитного поля Земли.

Главная проблема такая: как инициализировать инерциальную систему в начале работы, и корректировать её ошибки во время движения навигатора?

Первое, что приходит на ум – древняя и нерушимая схема: навигация по звёздам. Для работы потребуется чувствительная встроенная камера, лучше – три. Что, опять же, не является технологической проблемой. Используя атласы звёздного неба, данные о собственной ориентации в пространстве (гироскопы, акселерометры, компас) и точные часы, программное обеспечение навигатора сможет автоматически вычислить текущие координаты, если пользователь просто направит устройство камерами в сторону чистого ночного неба, ну и разрешит понаблюдать это небо несколько раз, через определённые промежутки времени. Фиксирование движения изображений звёзд позволит компенсировать неточности, присущие встроенным камерам – всё ж это не телескопы.

Впрочем, особенной точности тут добиться сложно. Но больших отклонений в работе инерциальной системы удастся избежать, а главное, появляется инструмент для её инициализации после сбоя или отключения для экономии батарей. Днём навигатору, для осуществления коррекции, остаётся наблюдать за Солнцем. Кроме того, заметные трудности возникнут, если небо затянуто облаками. Несколько дней подряд.

Есть второй метод: привязка к местности. На первый взгляд, тут тоже помогут камеры. Можно даже придумать разные алгоритмы взаимодействия пользователь – навигатор: “справа от вас находится крупный одиночный валун серого цвета, направьте камеру номер два в сторону этого валуна”, и так далее. Углы и расстояния навигатор может измерять, сравнивая полученные камерами изображения с данными карт: оптические параметры объектива камеры известны, поэтому измерение “расстояния” между двумя элементами карты на полученном изображении даёт расстояние до этих элементов от навигатора. Выбрать объекты можно попросить пользователя. Проблема не только в том, что карты обычно неточные, но и в том, что весьма непросто точно определить реальные границы опорных объектов (это могут быть, например, холмы, здания) на изображении.

Помочь может всё та же инерциальная система, ошибки в которой мы хотим корректировать. Предположим, пользователь плавно перемещает навигатор на некоторое расстояние, направив его камеры в заданную сторону. Инерциальная система позволит довольно точно определить пройденный “базис” и, в результате, получаем дальномер, который, при помощи измерения параллакса, вычисляет и расстояние, и угловые координаты опорных точек. Но точность всё равно оставляет желать лучшего. Данный метод корректировки зависит от степени детализации карты: может просто не найтись подходящих точек привязки.

Между прочим, для продвинутых пользователей, может быть доступен такой вариант калибровки: нужно отметить на карте точку, в которой в данный момент пользователь находится. Определить эту точку пользователю предстоит самому. На то он и продвинутый. Подошёл, скажем, к верстовому столбу, отметил “я стою здесь” на карте, всё – навигатор откалиброван.

Получается, что моментально получить координаты на карте в произвольном месте поверхности Земли, с точностью до нескольких метров, при помощи гипотетического портативного навигатора, не использующего GPS (и аналоги) – не выйдет. Что ж, поэтому и придумали спутниковую навигацию. Тем не менее, можно сконструировать автономный компактный навигатор, работающий без спутников, и выдающий пусть не сверхточную, но очень полезную информацию в режиме онлайн. Пока батарейки не сядут.



Комментарии (15) »

Google показывает очки “дополненной реальности”. А между прочим, ценность интерактивных очков, позволяющих просматривать дополнительную информацию в интегрированном с “основной” картинкой реальности виде, теряется, если эти очки служат лишь интерфейсом для смартфона. “Дополненние реальности” уведомлениями об SMS – это не то, что хотелось бы получить. Это лишь избыточный, маркетинговый “функционал”.

Полезный вариант – информация о том, что происходит вокруг, которую нельзя (или очень затруднительно) “пронаблюдать” обычным способом. Скажем, какие-то физические сведения об объектах, находящихся в поле зрения: скорость, направление движения – это интересно и полезно, потому что оказывается развитием зрительной системы. Ещё полезнее вывод информации от дополнительных сенсоров, демонстрация результатов анализа этой информации в режиме онлайн.

Хотя, наверное, как товар от Google – очки с “эсэмэсками” должны пойти хорошо. Тем более, что туда же можно транслировать указания вида “купи вот эту куртку”.



Комментарии (2) »

Специалисты из исследовательского центра Fraunhofer-Gesellschaft предлагают “зрячие” весы для супермаркетов самообслуживания: вместо того, чтобы указывать номер товара с помощью кнопки, покупателю предлагается выбрать одну из нескольких подходящих иконок на экране. Набор иконок весы формируют сами, “посмотрев” на внешний вид товара с помощью видеокамеры. То есть, система распознаёт, что там на весах: дыня или три банана. А выбор с помощью иконок нужен для того, чтобы отличить, например, разные сорта яблок, которые по внешнему виду похожи. Фото:



Комментарии (3) »

Вот это – неплохие наручные часы, на мой взгляд:

watch.jpg

Считывать время ещё удобнее, чем на цифровом дисплее.

Понятно, что правильные часы должны быть стрелочными. Почему? Да для того, чтобы можно было взглянуть на них и крикнуть: “Семнадцать тридцать на хронометре! Тысяча каракатиц! Перекладывай на три румба левее, бочка на траверзе! Топселя-гардели ставить, айнель-шкоты кельтяшка!” Ну или что-то такое.

Однако для упомянутых выше часов необходимо сделать исключение из правила. Такие часы могут быть не стрелочными, потому что читать время удобнее и выглядят правильно. Глянув на такие часы, можно говорить не “айнель-шкоты кельтяшка”, а, например, так: “Энергию в носовые щиты! Протонные торпеды – товьсь!”.

Часы найдены здесь. А ссылка – у Максима Макаренкова.



Комментарии (1) »

Вот такая настольная лампа “про абдукантов” (правда, пока не ясно, как и когда можно будет купить – это лишь концепция):

ablmp.jpg



Комментарии (2) »

Две штуки

Вот две хороших штуки.

1. USB Missile Launcher:

The USB Missile Launcher is the ultimate deterrent against those annoying people who lurk around your desk because they’ve nothing better to do. The Launcher holds three foam missiles, and Missile Command is located on your desktop. You simply use your mouse to control the launcher which rotates and tilts as you zero in on your victim, that, despite being deeply childish, is immensely satisfying. The Missile Launcher fires its three foam missiles sequentially as you hit the ‘Fire’ button, and though collateral damage is minimal, the fun factor is exceedingly high.
mislau_alt1.gif

2. The T-Qualizer:

The T-Qualizer is a t-shirt with a built in “graphic equalizer” panel that is sound sensitive.

tequalizer.gif

(найдено здесь)



Comments Off on Две штуки
Навигация по запискам: