ICANN отложила ротацию корневого ключа DNSSEC на неопределённое время. Первоначально, фактическую ротацию планировали провести 11 октября этого года. В качестве причины указаны данные о недостаточном распространении нового KSK (корневого ключа) по резолверам. Напомню, что корневой ключ (RSA, разрядностью в 2048 бит) в DNSSEC не менялся с момента внедрения технологии в глобальной DNS, то есть, с 2010 года. О механизме ротации при запуске просто забыли. За это время такой алгоритм ротации был предложен и утверждён согласно процессу IETF (RFC 5011), но теперь ICANN при помощи другого технологического механизма (RFC 8145) и косвенных данных обнаружила, что алгоритм ротации не работает.

В принципе, учитывая общую инертность глобальной DNS, а также разнообразие сочетаний платформ и настроек в базовых транспортах Интернета, откладывать ротацию можно сколь угодно долго: среди трафика, пригодного для анализа, всегда найдутся следы дефектных реализаций, которые могут сломаться при замене KSK. При этом, вовсе не факт, что послужившие источником “проблемных сигналов” системы вообще умеют валидировать DNSSEC. В Сети действует огромное количество “аномальных систем”, которые по тем или иным причинам пренебрегают требованиями протоколов. В классической DNS такая ситуация особенно распространена: протоколы спроектированы таким образом, что продолжают худо-бедно решать основные задачи даже при весьма существенных ошибках и нарушениях в реализации. Поэтому сомневаться, что при замене корневого KSK что-то сломается – не приходится в любом случае. Самое занятное, что сломаться могут даже те системы, которые не проводили валидацию DNSSEC.



Комментарии (1) »

Очередное обновление технического описания TLS, которое я поддерживаю и дополняю. Добавлено: подробное описание ряда ключевых атак на TLS (многие из них нашумели – POODLE, Logjam, весьма изящная DROWN и др.), подробное описание шифра ChaCha20 (вероятно, будет альтернативным для AES шифром в TLS 1.3). Текст довольно специальный (я, впрочем, уверен, что некоторые разделы будут понятны и полезны не только специалистам, но и тем, кто просто интересуется темой). Описание – здесь: https://tls.dxdt.ru/tls.html



Комментировать »

Современные антивирусы нередко добавляют свой “особый” корневой сертификат в системное хранилище или в хранилище браузера (зависит от платформы), это делается для того, чтобы прозрачно и без предупреждений для пользователя инспектировать трафик, защищённый TLS (обычно – HTTPS). Антивирус проксирует соединения, генерируя в реальном времени подменные сертификаты для TLS-серверов, которые посещает пользователь. Подменные сертификаты подписаны от корневого сертификата антивируса. У такого решения есть ряд неприятных, с точки зрения безопасности, побочных эффектов. Так, при помощи ключа от этого корневого сертификата можно перехватывать TLS-соединения не только на компьютере пользователя, но и на других промежуточных узлах сети (при этом не обязательно, чтобы антивирус работал – достаточно, что его корневой сертификат находится в списке доверенных).

Естественно, антивирус должен бы при установке генерировать для добавляемого сертификата уникальный локальный ключ. В противном случае, всякий пользователь антивируса, который сумел извлечь ключ из своей копии программы, получает потенциальную возможность перехватывать трафик других пользователей. Но, во-первых, антивирус может полагать, что сгодится и одинаковый для всех установок ключ. Во-вторых, уже встречались ошибки (или условные “ошибки”) в реализациях аналогичных схем, приводившие к тому, что ключ везде получался один и тот же. В-третьих, генерировать локальный ключ можно таким способом, что, зная дополнительную информацию, его нетрудно быстро вычислить и использовать на перехватывающем узле.

Перехватывающему узлу, конечно, ещё необходимо определить, что у клиента, который пытается установить TLS-соединение, встроен корневой сертификат от данного антивируса. Дело в том, что список корневых сертификатов системы не передаётся наружу, а попытка подмены при неустановленном сертификате – вызовет предупреждение в браузере. Однако перехватывающий узел может распознать антивирус подходящей версии при помощи анализа пакетов, которыми этот антивирус обменивается с центральными серверами разработчика. При целевой атаке – определить антивирус можно, просто взглянув на интерфейс операционной системы. Ну, либо сами разработчики могут посмотреть в регистрационной БД. И нельзя исключать вариант, что подходящий антивирус установлен у подавляющего большинства пользователей.

С другой стороны, при таком проксировании, соединение с удалённым сервером устанавливает не браузер, а прокси антивируса. Реализация TLS в данном прокси может содержать уязвимости. В целом, следует ожидать добротной реализации TLS от браузера, а не от того или иного антивируса (либо другого TLS-прокси). Дело в том, что подобное проксирование на клиентской стороне находится в некотором противоречии уже с идеологией протокола TLS, поэтому ситуацию в любом случае не улучшает. TLS-прокси может не валидировать или некорректно валидировать серверные сертификаты, соответственно, отсутствие аутентификации сервера позволит перехватывать соединение третьей стороне. Более того, TLS-прокси антивируса может быть ошибочно (или даже намеренно, ничего нельзя исключать) настроен так, что в качестве сессионных используются нестойкие ключи, которые достаточно легко вычислить, наблюдая TLS-трафик (либо даже просто зная время соединения и параметры клиента), для этого даже не потребуется знать секретный ключ от сертификата и активно перехватывать соединение. При этом, браузер может быть современным, а браузерная/системная реализация TLS – надёжной, но так как ключи для внешней сессии генерирует проксирующий модуль антивируса, появляется дополнительная возможность для пассивной расшифровки трафика, которая никак от браузера не зависит.



Комментарии (2) »

В инфраструктуре DNSSEC существует самый верхний ключ – KSK корневой зоны. К этому ключу ведут все (штатные) цепочки валидации DNSSEC, соответствующие общепринятой структуре DNS с единым корнем. Главный корневой ключ не менялся с момента запуска DNSSEC в 2010 году: спроектировать и согласовать механизм замены ключа каким-то образом забыли. Сейчас такой механизм появился, и начался процесс подготовки ротации KSK корня DNS: 11 июля в корневой зоне опубликован новый ключ (KSK) – KSK-2017. Так как новый KSK подписан действующим, можно произвести его замену автоматически, используя только DNS. Алгоритм описан в RFC 5011. То есть, если валидирующий резолвер поддерживает RFC 5011, то можно ожидать, что он автоматически заменит старый ключ на новый. Тем не менее, лучше заранее проверить, что резолвер смог получить новый ключ и включил его в список доверенных. Фактическая замена ключей (rollover) намечена на осень этого года (11 октября 2017) – до этого момента нужно убедиться, что ваш резолвер сможет использовать новый ключ, иначе валидация, спустя какое-то время после ротации, полностью сломается.

KSK-2017 можно добавить в резолвер и в ручном режиме, например, скопировав значение ключа из корневой зоны и проверив подписи. Информация о корневых ключах также доступна на сайте IANA.



Комментировать »

Стеганография – это различные методы сокрытия дополнительной информации в некотором открытом носителе. В современной ситуации, особенно, если рассматривать её в контексте Интернета, отличительная особенность стеганографии в том, что она позволяет скрывать метаинформацию об обмене данными: то есть, скрывать сам факт установления соединения. Так, защитить передаваемую по открытому каналу информацию от прослушивания поможет шифрование, но сам факт соединения (передачи зашифрованной информации) будет виден прослушивающей стороне, и она, например, может помешать этому соединению, прервав его в самом начале.

Создание хорошо сокрытого канала связи представляет проблему. В случае с Интернетом, дополнительный канал может быть спрятан внутри того или иного “обычного трафика”, но подобрать правильный трафик – непросто. Например, не годится метод, когда для маскирования используется специально создаваемая сессия с особым удалённым узлом, даже если эта сессия является “обычной” парой “HTTP-запрос/HTTP-ответ”: во-первых, будет зафиксирован факт отправки запроса; во-вторых, активная атакующая сторона может перехватить соединение, прервать его, а потом повторить запрос самостоятельно, тем самым выяснив какие-то детали обмена информацией.

Посмотрим на простой пример достаточно защищённой схемы. Если стеганографический канал организуется между двумя узлами, у которых есть заранее распределённые секретные ключи, то эти ключи можно использовать для формирования “стеганографической канвы”, которая будет вычислительно неотличима от случайной. Предположим, что в качестве носителя используется “обычный” видеопоток, например, с того или иного видеохостинга (или видеоконференция, если требуется сравнимый поток трафика в обе стороны). Тогда отправляющий узел с помощью симметричного блочного шифра и секретного ключа генерирует некоторую псевдослучайную последовательность чисел (например, последовательно зашифровывает значения счётчика), эти числа адресуют фрагменты передаваемого трафика-носителя, в которых будут изменены некоторые биты с целью передачи скрытой информации. Псевдослучайная последовательность выглядит как шум. Если неизвестен ключ и нет опорной копии трафика-носителя, то выявить подозрительные блоки данных в этом трафике практически невозможно. Однако принимающая сторона, которой адресованы скрытые данные, может их легко найти, сгенерировав ту же самую псевдослучайную последовательность на основе известного секретного ключа. (Сами полезные данные, естественно, тоже должны быть зашифрованы и защищены от подмены.)

На практике эта схема сталкивается с трудностями распределения ключей. На первый взгляд, можно предположить, что узлы просто используют тот или иной типовой вариант протокола Диффи-Хеллмана (DH). Но этот протокол обычно виден в трафике: так, в случае подходящего варианта на эллиптических кривых, открытый ключ представляет собой координаты точки на кривой – соответственно, если прослушивающая сторона знает кривую, то она может элементарно обнаружить факт обмена DH, проверив, что подозрительные байты действительно кодируют точки на кривой. Сам секрет таким образом вычислить, конечно, нельзя, поэтому узлы смогут использовать полученный ключ в других сессиях. Более того, далеко не всегда можно с большой вероятностью сказать, что стороны действительно обменялись ключами, а не просто передали случайные значения (точки). Однако, речь идёт именно о сокрытии факта соединения, а сеанс DH этот факт документирует довольно неплохо.

При этом активная сторона, пытающаяся обнаружить сеансы стеганографической связи, может выполнять проверку соединения, повторно проигрывая записанный трафик в сторону каждого из узлов и анализируя ответы.

Несомненно, возможны скрытые схемы, использующие сложные разбиения элементов различных ключей, предназначенных для одного из узлов, по множеству различных сообщений: в этом случае прослушивающая строна может собрать не тот ключ, который получился у узла, находящегося под наблюдением, соответственно, не сможет определить факт обмена ключами.

И, конечно, если секретные ключи у сторон есть, то они могут построить скрытый канал связи, не только на базе трафика видеотрансляции, но и многих других носителей, в том числе, на базе текстовой информации – различаться будет только скорость обмена.



Комментировать »

Прямое и универсальное использование квантового компьютера для “взлома” симметричных шифров сводится к (квантовому) поиску при помощи алгоритма Гровера (это аналог полного перебора вариантов). Из-за квадратичного выигрыша, который даёт данный алгоритм относительно перебора на классическом вычислителе, симметричные шифры для сохранения практической стойкости должны использовать ключи в два раза большей разрядности. Но квантовый компьютер может быть использован и для криптоанализа, направленного на тот или иной конкретный шифр, то есть, для снижения стойкости конкретного шифра, а не для простого перебора: успешный криптоанализ – позволяет существенно снизить “мощность перебора”. При этом универсальный квантовый компьютер можно применить для реализации уже наработанных классических техник криптоанализа (с тем или иным выигрышем в производительности, либо без выигрыша), а можно разработать некие новые квантовые методы криптоанализа, что гораздо интереснее.

Эти квантовые методы должны использовать какие-то свойства взламываемого шифра, которые хорошо проецируются именно на возможности квантовых вычислений. Пример. Предположим, что для для заданного шифра можно построить некоторую периодическую функцию, разбивающую всё пространство ключей на интервалы. Период этой функции может эффективно определить квантовый компьютер (это типичная задача, так, на поиске периода основан квантовый алгоритм Шора факторизации чисел). Знание периода позволяет путём анализа нескольких пар, состоящих из открытого текста и соответствующего ему шифротекста, определить, в какой именно из интервалов попадает секретный ключ, а дальше уже перебирать значения только из этого интервала, который, предположим, невелик. (Можно переформулировать: пусть обнаруживается период функции, определяющей возможные ключи – в таком случае, зная период, можно будет проверить только их, прыгая по значениям.) Пары открытых текстов и шифротекстов часто известны на практике. Скажем, HTTPS, использующий TLS в качестве транспорта, подразумевает передачу куки-файлов или известных заголовков запросов. При этом режим счётчика (GCM и пр.) основан на зашифровании последовательных значений. Это грубое изложение, но оно математически сходно с атаками, которые уже несколько лет обсуждаются в публикациях, применительно к различным режимам симметричных шифров.

Другими словами, алгоритм Гровера, “грубый поиск”, является универсальным. Если он будет реализован (а для реализации, применительно к шифрам, потребуется сложный квантовый компьютер с тысячами кубитов), то это затронет стойкость всех симметричных шифров, но приведёт “всего лишь” к росту разрядности ключей в два раза. Однако неверно полагать, что не существует куда более эффективных квантовых методов криптоанализа, которые, в случае появления мощного квантового компьютера, снизят до уровня непригодности стойкость если не самих используемых сейчас симметричных шифров, то их повсеместно применяемых режимов работы.



Комментарии (1) »

Google намеревается в браузере Chrome резко ограничить доверие SSL-сертификатам, выпущенным удостоверяющим центром Symantec. Это касается и других брендов Symantec: GeoTrust и Thawte, главным образом, а также прочих “партнёрских” линеек. Речь идёт о принудительном снижении допустимого срока валидности (не более девяти месяцев – коммерческие сертификаты обычно выпускаются на год и более, это одна из их важных особенностей) и отключении EV-статуса (“расширенная проверка”, самые дорогие сертификаты). Это реакция на выявленные нарушения политик и требований к работе УЦ.



Комментарии (1) »

С удостоверяющим центром (УЦ) WoSign приключилась неприятность – из-за нескольких достаточно серьёзных нарушений требований (и, в частности, из-за кривого аудита), сертификатам, выпущенным от корней данного УЦ, перестали доверять браузеры (в одном пакете с WoSign оказался и другой УЦ – StartSSL: последний, как неожиданно выяснилось, был ранее куплен и, фактически, объединён с WoSign). Напомню, что и WoSign, и StartSSL выпускали бесплатные TLS-сертификаты.

Я использовал несколько сертификатов WoSign. В частности, на dxdt.ru серверный сертификат от WoSign служил в качестве входа во вторую ветку валидации для RSA (основной веткой я считаю ветку с ECDSA). То есть, сервер поддерживал обе криптосистемы для аутентификации: и ECDSA, и RSA. Сейчас я удалил RSA-сертификат WoSign и, соответственно, отключил поддержку RSA. Осталась только ECDSA – схема подписи, работающая на эллиптической кривой. Это означает, что устаревшие конфигурации браузеров/операционных систем больше не имеют доступа к сайту. Полагаю, что Windows XP с браузером IE 8 – так или иначе плохой набор для работы с Вебом. Для всех современных браузеров (и ОС) проблем быть не должно (если проблемы есть, то пишите в комментарии, если, конечно, вы как-то читаете этот текст). Стандартный набор для подключения: ECDSA + AES в режиме GCM. На всякий случай, я оставил в заголовках HPKP отпечатки ключей RSA (вдруг, они потребуются в будущем). Кстати, так как внедрение HPKP прошло успешно, попутно увеличил время кэширования отпечатков ключей до 30 суток.

Сертификат WoSign также использовался на сервере tls.dxdt.ru – пришлось заменить его на сертификат от Comodo: я провёл замену некоторое время назад, когда из обсуждения в сообществе Mozilla стало ясно, что WoSign удалят из списка доверенных корней. Ведь не очень правильно держать сайт с техническим описанием TLS под сертификатом, выпущенным проблемным УЦ.

В принципе, ранее выпущенные сертификаты WoSign продолжают поддерживаться, до момента истечения их срока действия. Такое положение вещей служит неплохой иллюстрацией того, насколько сложной и непрямолинейной стала система аутентификации серверов в браузерах. Эта система теперь дополняется всякими хитрыми исключениями: “вот этому корню доверяем, но только до такого-то срока”.

Другой эффект проблем с WoSign: из бесплатных решений теперь только Let’s Encrypt, с их короткоживущими сертификатами и внешними скриптами на сервере. Да, скрипты можно написать собственные, реализовав протокол ACME, но это всё равно не тот вариант, который хотелось бы видеть.



Комментарии (6) »

Появилась новая работа, посвящённая быстрому вычислению секрета протокола Диффи-Хеллмана (DH) из записанного трафика – популярная статья Arstechnica, – речь идёт о том, что можно, и это показано на практике, за обозримое время вычислить секрет, полученный в рамках обмена DH, используя даже университетское оборудование. Под “университетским” имеется в виду, что это не супердорогой специализированный вычислитель. Для успешной атаки требуется, чтобы модуль DH был коротким – 1024 бита, – и имел специальный вид. При этом обнаружить “специальный вид” снаружи и использовать для ускорения вычислений – нельзя, откуда и предположение о закладках.

О том, что найти секреты DH в произвольной короткой, 1024-битной группе, можно, если у вас есть достаточно мощный, но доступный на уровне современных технологий, компьютер и вы предвычислили нужную “арифметическую структуру” группы, известно довольно давно. Сейчас решение продемонстрировали на практике, подтвердив, что если правильно выбрать модуль, то объём вычислений ещё сокращается на несколько порядков.

Для того, чтобы атака сработала, требуются типовые группы. В более строгом случае, с подготовленным модулем, используемую группу нужно прямо задать. (Более мягкий вариант – работает с любой заранее известной 1024-битной группой, но для каждой потребуется большой объём предварительных вычислений и большой объём памяти для хранения результатов.)

Самое занимательное, что с типовыми группами проблем как раз нет. Например, в Рунете (.RU, .РФ) около 280 тыс. имён аресует узлы, поддерживающие HTTPS/TLS и классический вариант DH, которые используют всего две различных группы с разрядностью 1024 бита. Одна – это группа по умолчанию из mod_ssl, а вторая, насколько я понимаю, из настроек по умолчанию модуля SSL в nginx. Обе группы, очевидно, потенциально уязвимы. (Пояснение, 12/10/16: я скорректировал текст – изначально было написано, что 280 тыс. серверов, но речь идёт о числе доменов – имён TLS-хостов.)

Про то, что генерация общего секрета по протоколу Диффи-Хеллмана вовсе не является эквивалентом симметричных ключей, которые “есть только на узлах”, я не раз писал ранее. Например – в записке про извлечение секрета DH из трафика.



Комментарии (12) »
Навигация по запискам: Раньше »