Картинка из прошлогодней записки про таблицу подстановок:

S-boxes

С чем связана такая геометрия верхней части? Прежде всего, с тем, что каждая строка там – это уменьшение “неопределённости” в два раза. И действительно: картинка состоит из значений байтов, повёрнутых вертикально, то есть, это таблица, в которой верхняя строка соответствует старшему биту байта. Последовательное увеличение значений байтов, справа налево, с использованием типового кодирования (это важная оговорка), означает, что половина клеток-пикселей старшего бита заполнена нулями, половина – единицами.

Нули и единицы разбивают всё пространство возможных значений на две равных части. Вот это и есть ключевой момент теоретико-информационного определения бита, про который нередко забывают даже при постоянной, – ручной, так сказать, – работе с битами/байтами: один бит информации соответствует уменьшению “неопределённости” в два раза, что бы там под “неопределённостью” ни подразумевалось. Если взять произвольный байт, то значений у него может быть 256 различных, это будет степень неопределённости. Если известен один бит, то возможных значений уже 128, если два бита, то 64, и так далее, перемещаясь по картинке вниз. А если эту концепцию наложить на идею непрерывности, то нетрудно увидеть целый набор фундаментальных математических объектов.



Комментировать »

Единичной окружностью, при некоторых допущениях, можно назвать достаточно мощное множество пар чисел (x, y), которые удовлетворяют формуле X^2 + Y^2 == 1. Это, например, привычный случай школьной координатной плоскости. Но можно сказать, что “окружность”, без всяких формул, это большой набор конкретных пар чисел, которые буквально переписаны в массиве исходных данных. Отсутствие формулы в методе определения делает второй вариант существенно отличающимся от первого. И этот второй вариант как раз соответствует популярному сейчас подходу с использованием ИИ (“искусственного интеллекта”) в качестве инструмента анализа: вместо построения вычислительно эффективного общего метода – предлагается таскать с собой наборы исходных данных, проводя там поиск. Чтобы описать больше разных окружностей – возьмём больше разных массивов.

В случае с формулой – (координатная) пара принадлежит окружности, если подстановка в формулу сохраняет равенство. В случае с массивом исходных данных – пара принадлежит окружности тогда, когда удалось найти именно эту пару методом перебора массива. Зато нет дополнительных моделей и концепций. Это сильно различающиеся подходы.

Важный онтологический аспект: новое знание – это возможность заменить большой массив “исходных данных”, где из дополнительных структур присутствует только способ индексирования (“итератор”, если хотите), на структурный метод, который в вычислительном смысле не только короче, но и много проще, чем “итератор” с исходными данными. Понятно, что таблица координат точек, задающих окружность, тоже может использоваться во многих практических случаях, например, если нужно быстро рисовать некоторые “закрашенные круги” на некотором “матричном” дисплее (условном). Есть и другие варианты эффективного использования подобных таблиц. Но они не отменяют того факта, что можно написать короткую программу, – короче, чем массив с точками “окуржности”, – которая успешно сгенерирует сотни мегабайт видеопотока, имитирующего, предположим, полёт над некоторой фантастической местностью. И тут можно вспомнить популярные когда-то давно “демо-программы” (“демосцены”), работавшие на ограниченных вычислительных ресурсах.

Понятно, что не всякие наборы пар чисел укладываются в заданную выше формулу, если, конечно, не изменять базовую логику, определения операций и прочие свойства. У схемы X^2 + Y^2 == 1 – есть много оговорок, её запись и реализация требует некоторых дополнительных соглашений, в отличие от простого “итератора”, построенного в стиле попарного сопоставления некоторых элементов множества. Однако именно поэтому данная схема несравнимо богаче по познавательным возможностям. Например, использование формулы позволяет построить объяснение того, как так выходит, что некоторая пара чисел не лежит на заданной окружности, то есть, построить весьма мощные новые теории. А вот массив исходных данных, сам по себе, – такой возможности не предоставляет: тут только и можно сказать, что “соответствующей пары нет в списке”.



Комментировать »

Кстати, есть весьма полезный пример, показывающий различие между формулами, компьютерами и интерпретацией формул. Его удобно приводить в качестве иллюстрации к объяснениям про “компиляторы, регистры, транзисторы и ячейки с битами”. Отчасти относится к предыдущей заметке. Сравним запись (a == b) с записью ((a – b) == 0). Например, в контексте записи и компиляции исходного кода на том или ином языке программирования: if (a == b) {…} и if ((a – b) == 0) {…} – известно, что результаты вычисления условий в таких if-ах на практике могут различаться; причём то, как именно они различаются, зависит и от языка, и даже от используемого системного окружения.

Наивная арифметическая логика тут такая: “a равно b, когда a-b == 0”. Но тут многое спрятано внутри. Во-первых, никто же не сказал, какого типа объекты a, b; во-вторых, не определено, что это за операция “-“; в-третьих, с равенством, как понятием, вообще говоря, тоже есть масса тонкостей. Так, в записи использован двойной знак равенства “==” – он означает какую-нибудь “эквивалентность”?

Знак “=” – один из самых сложных, с точки зрения машинной интерпретации. Собственно, поэтому и возникли “==”, “===”, “:=” и прочие сочетания. Вот если написано “f = m+n”, то что тут имеется в виду? Что “f” – это “формула” (или даже “функция”), имеющая вид _ + _? Или запись обозначает, что имя “f” нужно использовать как синоним для строки “mn”? Или это условие, которое обозначает проверку того, что число под именем “f” равно сумме чисел под именами “m” и “n”? Или какой-то другой вариант?

Можно предположить, что “==” это именно “равенство”. Но равенство объектов ещё нужно определить. Это не всегда просто. Особенно, для компьютеров. Особенно, если вы вынуждены использовать какие-нибудь представления с плавающей точкой – тут не только нули прекрасно расщепляются на разные представления, но и другие неожиданные эффекты постоянно проявляются (см. пример ниже). Конечно, наивный школьный подход предполагает, что “==” это, всё же, “простое и очевидное” равенство натуральных чисел, автоматически оснащённых сложением, умножением, и даже какими-то некоммутативными и разрывными вычитанием с делением. Что касается натуральных чисел, то, согласно распространённому мнению, тут-то вообще всё становится “очевидным” ещё после того, как в начальных классах про них много рассказали на примерах с палочками. Поэтому случается, что натуральные числа смело относят в разряд “самоочевидных феноменов”, с которыми работать умеют, якобы, даже вороны и, особенно, вороны (переключите ударение, если вы не LLM).

Однако, если не заходить далеко в орнитологическую область, а остаться с компьютерами, то и тут не нужно даже вспоминать теоретическую математику, чтобы символ “==” начал расплываться: достаточно того, что компьютеры, через языки высокого уровня, работают и со строками символов (что бы это ни значило). Сравнение строк требует дополнительных соглашений, с которыми сталкивались даже многие пользователи персональных компьютеров. Причём процесс тут двунаправленный, приводящий к занимательным эффектам: вспомним, что во многих случаях заглавные и строчные буквы ASCII считаются одинаковыми. Тогда строка “AbC”, выходит, равна строке “ABc”, пусть тут и некоторое видимое свойство перешло на соседнюю букву; но это означает, что “ABC” является повторением “Abc”, и хоть битов для записи нужно больше, ничто не мешает на каком-то этапе обработки переписать “ABC” как “abc” – что сплошь и рядом делается в программировании, а побочный эффект используется для защиты DNS-запросов, сколь бы странным это ни показалось.

А ведь “==” может предусматривать неявное приведение типов при сравнении, что прямо относится к не менее школьным, хоть и некоммутативным, задачам про апельсины в ящиках (например). Потому и появляются “===”, а также и используемые в теоретической математике “:=”, означающие не столько “равенство”, сколько определение. Что же про вариант (a-b) == 0, то тут, как минимум, ясно, что требуется ввести много дополнительных соглашений, чтобы определить вычитание. Особенно, для строк. Но и без строк в компьютерном представлении возникнут новые, занимательные эффекты, иногда полезные, иногда – неожиданные.

Вот и вернёмся к языкам программирования и представлению чисел в компьютерах. Известно, что уже в языке Python попытка признать (a-b) == 0 и a == b эквивалентными наталкивается на тот самый, занимательный, эффект:

import math
a = math.pow(5, 55)
b = 5 ** 55

print(a == b)
print((a - b) == 0)

Эта нехитрая программа печатает следующий результат (Python 3.9, Debian 11):

False
True

Так что здесь a хоть и не равно b, но зато (a – b) равно нулю. Что происходит? Происходит вычислительное сравнение, на которое влияет представление чисел внутри Python, переполнение и автоматическое (неявное) преобразование типов:

a == 2.7755575615628914e+38
b == 277555756156289135105907917022705078125

– это, вообще-то, весь фокус, записанный “в формулах”. Соответственно, если возводить в степень 15, то программа напечатает True и True, что соответствует арифметическим ожиданиям. Аналогичный эффект (True, True) даст, по другой причине, следующий вариант:

import math
a = math.pow(5, 55)
b = 5 ** 55

print(a == float(b))
print((a - b) == 0)

За простыми на вид компьютерными формулами часто скрываются хитрые трактовки и скрытые структуры, которые хоть и подразумеваются, но это подразумевание бывает с двойным (“==”), а то и с тройным дном (“===”).



Комментировать »

Одним из содержательных, – и в чём-то вычислительных, – способов разграничения “квантового” и “не-квантового” является вынос экспоненциальной мощности, соответствующей пространству состояний, из “внешней” Вселенной за мысленное представление об этом пространстве состояний. Может показаться загадочным. Это потому, что тут-то как раз присутствует некоторая “контринтуитивность”.

Иными словами, мощность 2^2000 состояний интерпретируется как количественная оценка незнания о состоянии некоторой системы (частиц) в мысленном представлении конкретного наблюдателя-исследователя: вот система из 2000 частиц, но наблюдатель-исследователь не знает ничего о конкретном её состоянии, кроме того, что вариантов есть всего 2^2000, а две тысячи битов можно даже вручную зарисовать карандашом на листе ватмана. Получается, что весь огромный массив “спрятался” за мысленным представлением о неизвестном (кстати, это концептуально совпадает со схемами физических экспериментов, когда наступление “квантового” события определяется по отсутствию события “классического” – “детектор ничего не детектировал”).

В случае, когда огромное количество состояний нужно было бы вкладывать в “окружающую Вселенную”, мощностей могло бы и не хватить. А вот огромный “топос”, стоящий за интеллектом наблюдателя-исследователя, проблем с размещением 2^2000 испытывать не будет: во-первых, это конечное количество; во-вторых, значение локализуется в легко обозримую структуру. Перекликается с идеями о том, что и окружающий кусочек Вселенной – это лишь локализация аспектов из того самого “топоса” (то есть, “галлюцинации”), а невычислимый процесс этой локализации – соответствует интеллекту (может, даже разуму).



Комментировать »

Что лучше – заучить, что 7 * 9 == 63 или знать, что 7 * 9 == 9 * 7? Вопрос дискуссионный. Коммутативность – свойство из разряда “универсальных”, но и хорошее понимание про 63 приводит к не менее важному наблюдению: 63 = 7 * 3^2. С другой стороны, спросите у знающего человека, чему равно π * e – и ответ, с минимальной “занимательностью”, будет таким: π * e == e * π. Спросите то же самое у человека с калькулятором, и он ответит: 8.539734223(…) – возможно, даже без многоточия, поэтому оно в скобках.

Вроде бы, калькулятор на экзамене по математике не нужен, в принципе, а тем более, на школьном экзамене. Но из этого не следует, что требуется именно заучивать таблицу умножения. Понимать такую таблицу, уметь хотя бы немного считать в уме – да, наверное, нужно, потому что это сильно помогает в освоении прочих операций мышления (в чём, собственно, и состоит смысл знакомства с таблицей умножения). Компьютеры на современную теоретическую математику уже оказали большое влияние, но с развитыми навыками владения кнопками примитивного калькулятора это влияние, всё же, не связано, а с таблицей умножения – связано прямо.

Впрочем, привнесение калькулятора в школьные экзамены по математике не должно ни на что повлиять. До тех пор, пока программу обучения не переделают исключительно под “знакомство с калькулятором” – когда переделают, тогда уже без калькулятора будет сложновато. Вообще, многое вокруг этой темы напоминает популярные сейчас рассуждения, что если ChatGPT, погоняемое студентом, может легко написать (сгенерировать) сносное эссе, подходящее под задание преподавателя, то, мол, пора убрать написание эссе из процесса обучения. Да. В Новом Средневековье, конечно, и не такое можно будет увидеть.



Комментировать »

Суперпозиция на омонимах может быть развита вплоть до демонстратора важных онтологических принципов, стоящих за квантовыми вычислениями. Фраза “личинка заблокировала собачку в замке” содержит заметно более одного значения среди возможных. Однако, если сопроводить фразу “настроечным” текстом, значение схлопывается в конкретный вариант.

“Насекомые могут мешать работе механизма, бывает, что и личинка заблокировала собачку в замке”. Это вариант для жуковедов. Если же в “настроечном” тексте речь шла о домашних животных феодалов, то собачка вполне может заранее превратиться в маленькую собаку. Фактически, слова начального текста, взятые вместе с фактом интерпретации омонимов, проявляют структуру, на которой успешно строится и понимание “квантовой запутанности” с неравенствами Белла, и другие элементы популярной квантовой механики, которые, почему-то, едва ли не повсеместно спешат назвать “контринтуитивными”.

Если хотите, то упомянутая структура управляет ударением в омографе “замок”. (Тут ещё интересно то, как подобное теряется в LLM, – в “больших языковых моделях” ИИ, – но это отдельная тема.) Как можно этим же способом охватить и принципы квантовых вычислений? Часть уже должна быть понятна из суперпозиции “собачек”. На следующем шаге потребуется представление интерференции состояний. То есть, требуется добавить ещё омонимов, но не каких угодно, а таких, которые окажутся связаны с состояниями уже используемых в целевой фразе. Самый простой вариант – для того, чтобы “собачка” стала механическим элементом, можно использовать “ключ” и “треснул”: “треснул ключ, а личинка заблокировала собачку в замке” (и засов теперь не сдвинуть). Использование “ключа” вызвало интерференцию, резко снизив вероятность интерпретации слова “собачка” как обозначающего мелкое животное белого цвета.

Заметьте, что такая интерпретация всё ещё возможна в принципе, если немного расширить контекст. “Чтобы вновь запустить цирковую карусель, медведь доской треснул ключ, а личинка заблокировала собачку в замке” (круговорот диковин в шапито: гигантская личинка загоняет собачку в макет замка). Интерференция позволяет перегонять вероятность в нужном направлении, а в вычислениях такое должно работать потому, что превращение “собачки” в механическую деталь позволяет определить наличие “ключа” даже в том случае, когда начало фразы не приводится: если ударение в “замке” на последний слог, то где-то раньше стоял “ключ”, который “треснул”. То есть, если представить, что начало предложения может быть разным, то способ постановки ударения в “замке” позволяет определить, механическое там что-то было или нет. Обратное распространение значений. Впрочем, не сказано, кто же тогда предложение читает.

Это забавно. Однако, сколь бы странным подобное рассуждение ни показалось, именно структуры данного типа, существующие выше морфологии, позволяют строить осознаваемые (не всеми, но некоторыми) интерпретации квантовой механики, и даже планировать построение квантовых компьютеров. Но для LLM это недоступно.



Комментировать »

Исходная мотивация для квантовых вычислений состоит не в кубитах, а в поиске механизма, который позволил бы вычислить “невычислимое”, ну или хотя бы “сложновычислимое”. Кстати, едва ли не первое описание концепции дано в книге Ю. И. Манина “Вычислимое и невычислимое”, 1980 года (изд. “Советское радио”) – там несколько абзацев в предисловии (с.15) посвящено “квантовым автоматам”, уже эти несколько абзацев точно и полно описывают концепцию того, как квантовые вычисления далее и развивались. Сама книга не о квантовых вычислениях. Тем не менее, в тексте предисловия на примере проблем моделирования известными “классическими” методами простых физико-химических явлений, показана связь с несравнимо большей мощностью пространства квантовых состояний – вот эту мощность и предлагается использовать в реализации будущих вычислительных механизмов.

В вычислительном моделировании белковых молекул ситуация и сейчас, спустя более чем сорок лет, примерно такая же – расчёты требуют многих дней работы суперкомпьютера, но соответствующий процесс геометрического превращения белка происходит за доли секунды. Это одно из направлений, на котором, как считается, могут помочь квантовые компьютеры той или иной системы.

Почему вычислительное моделирование вообще должно работать на скорости, сравнимой с моделируемым процессом? Это моделирование больше похоже на попытку перебора состояний, то есть на обращение некоторой сложной функции-свёртки. Можно было бы попробовать придумать небольшой алгоритм, который моделировать ничего не будет, но вывод даст похожий на какую-нибудь сворачиваемую молекулу. Другими словами, обязательно ли предполагать, что упавшая на каменный пол стеклянная ёлочная игрушка, прежде чем разбиться, вычисляет набор осколков, на которые она разлетится?

Предположим, в симуляции вселенной игрушка могла бы и “зависнуть”, вот буквально в момент удара об пол – если расчёт осколков достаточно сложен; другое дело, что прочие персонажи внутри симуляции всё равно этого не заметили бы, так как ход последовательности событий, споткнувшись на ёлочной игрушке, одинаково приостановился бы для всех находящихся внутри – иначе событие разбития игрушки начало бы отставать по времени от момента падения; впрочем, известно, что такие эффекты относительно легко корректируются позже; кроме того, “разбивку” осколков можно и предвычислить, оформив в виде процедуры, выдающей, как калейдоскоп, разные наборы, которые вычислительно непредсказуемы изнутри симуляции, но укладываются в прочие ограничения, что позволяет пытаться их считать: вычислительная непредсказуемость тут как раз и выводится из экспоненциального роста сложности определения свойств исходной внешней процедуры по её внутреннему выводу.

Впрочем, концептуальная идея квантовых вычислений основана на обратной трактовке ситуации: предположим, есть физический процесс, который явно опережает “по скорости сходимости” все известные для моделирования похожих процессов вычислительные методы, – давайте используем сам этот процесс для вычислений, хоть бы и по какой-то другой задаче. Некая запредельная квантовая процедура быстро определяет конфигурации осколков ёлочной игрушки (волка там какого-нибудь, это не так важно) – давайте сводить другие задачи к модели, полезный результат которой отобразится в конфигурацию осколков. Это больше похоже на “квантовый отжиг” (quantum annealing), но, собственно, такой же подход реализуется и в алгоритме Шора, который описывает, как перевести задачу отыскания периода функции в квантовомеханические “операторы”. Алгоритм математический, а для успешной его работы остаётся найти подходящий физический процесс. С этим могут быть трудности. Естественно, это всё напрямую связано с тем, что пока что толком не понятно, откуда именно берётся “мощность”, стоящая за конкретным, пусть и гипотетическим, квантовым вычислением.

Один из исторических подходов к выводу понятийных основ квантовой механики состоит в следующем сравнении “меньше-больше”: пусть исследователь изучает всё меньшие и меньшие аспекты окружающего мира, тогда, с соответствующим уменьшением инструментов измерения, эти инструменты начинают всё больше и больше влиять на измеряемое. Отсюда хрестоматийное определение: влияние прибора убрать нельзя, а чем выше полагаемая точность измерения, тем больше измеритель влияет на измеряемое – например, на элементарную частицу, на электрон.

Нужно заметить, ничто не мешает пытаться, собственно, измерять параметры скорости хорошо локализованных в пространстве электронов с высокой точностью – проблемы начинаются с предсказуемостью результатов последовательных измерений в одной и той же конфигурации оборудования. Предсказуемо определить измерением, получается, нельзя, а значит – нельзя и знать, то есть, феномен скрывается из области реального. При дальнейшем обобщении, учитывающем прочие эксперименты, включая мысленные (как двухщелевой опыт с фотонами и наблюдателем над щелями), в этом месте и появляется “поле вероятности” из которого можно “выбивать” измерениями разные значения, но уже с хорошо определяемым распределением. Получается, за всеми этими “частицами” стоит некоторое большее поле вероятности, а в нём возможны некоторые волны изменений, порождаемые разными шагами квантового эксперимента, при этом интерференция данных волн влияет на распределение будущих результатов измерений. И если правильно устроить экспериментальный прибор (квантовый компьютер), то, возможно, получится применить результаты превращения вероятностей в измерениях и вычислениях. Однако тут возможны разные интерпретации.



Комментировать »

Случайно тут попалось высказанное в качестве примера утверждение про восприятие текста: “если в предложении на английском языке поменять слово, то человек, знакомый с английским, сразу увидит – изменился смысл (meaning) предложения или нет” (перевод с английского). Конечно, всякий пример, подготовленный с подобной степенью обратной аллегоричности, содержит обязательные неточности, но данный вариант особенно интересен, потому что сводит взаимодействие “смысла” и “текста” к отдельным словам.

Вот если в предложении “дерево весело задело” поменять “дерево” на “платье”, то изменится ли смысл? Сможет ли оценить изменение смысла человек, знакомый с русским языком?

С одной стороны, тут похоже, что предложение не имеет смысла ни с одним из двух переставляемых слов. Значит, если смысла нет, смысл “пустой”, то он и не изменился, ведь пустое множество – самый инвариантный инвариант: пустые множества элементов любых типов не просто не отличаются – пустое множество вообще всего одно. С другой стороны, если “смысла нет” означает отсутствие смысла, то тогда мы имеем дело с некоторым конструктом, в который пустое множество (обобщённое “отсутствие”) может быть погружено, потому как чтобы заявить, что “смысла нет”, нужно сперва определить, что такое “смысл”, а потом утверждать, что такого нет. Получается, мы теперь имеем дело с некоторой пустой коробкой, а коробки могут быть разного цвета, их можно вкладывать одну в другую и настолько преуспеть, что даже построить таким способом натуральные числа. Так что то, как именно “смысла нет” в предложении – могло и поменяться, в зависимости от “дерева” или “платья”: цвет пустой коробки начинает играть важную роль, поскольку тут этот цвет превращается в интерпретацию иллюстративной роли отсутствия смысла в исходном предложении “о задевших деревьях”, то есть, задаёт понимание того, что именно это предложение показывает читающему. Замена дерева на платье может что-то поменять в смыслах, но на более высоком уровне. Сразу ли увидит это человек, знакомый с русским языком? Это зависит от контекста и от опыта человека.



Комментировать »

Предполагается, что постквантовые криптосистемы – это защита от взлома на квантовом компьютере. На гипотетическом квантовом компьютере, который может реализовать соответствующие алгоритмы – алгоритм Шора, прежде всего. Конечно, современный уровень “хайпа” вокруг квантовых компьютеров уступает уровню “хайпа” вокруг “искусственного интеллекта”, тем не менее, квантовых компьютеров, подходящих для атак на используемые сейчас криптосистемы, ещё никто не показал. И даже ничего близко похожего – не показали. Но если почитать, например, статью про квантовые вычисления даже в англоязычной “Википедии”, то там почему-то уверенно обсуждаются “практические особенности”. Но до “практики” же ещё очень далеко. Пока что даже исследовательские алгоритмы, призванные показать “квантовое превосходство”, требуют создания специальных задач, которые структурно оптимизированы не в направлении вычислительной полезности, а в направлении использования свойств, потенциально доступных на имеющихся сейчас квантовых устройствах (см. boson sampling). Это естественно, весьма логично для этапа теоретических исследований на экспериментальном оборудовании, но не относится к практическому применению универсальных компьютеров.

В популярных изложениях нередко сильно искажают ситуацию (а иногда – искажают и не в совсем популярных: см. историю про “голографическую кротовую нору”), заявляя, что алгоритм Шора уже был успешно реализован на таких-то и таких-то конфигурациях. При этом для алгоритма Шора ключевое значение имеет не “суперпозиция состояний”, про которую всё время рассказывают, а реализация квантового преобразования Фурье, потому что именно в нём состоит содержательная часть – алгоритм должен работать потому, что схемы преобразования Фурье позволяют, в теории, определить период функции, заданной на значениях квантовых регистров. Однако в экспериментах именно эту часть (преобразование Фурье) существенно упрощают или вообще исключают, так как нет доступных экспериментальных квантовых схем, подходящих для практической реализации. На малых разрядностях (несколько битов/кубитов) преобразование Фурье для алгоритма Шора вообще не имеет вычислительного смысла, поскольку в принципе нельзя увидеть “длинных” периодов. Не исключено, что в случае “коррекции ошибок” на дополнительных схемах – преобразование Фурье совсем не будет работать для отыскания периода из-за того, что алгоритм-то, по предназначению, целочисленный. И это если оставить за скобками то, что создание гипотетического квантового компьютера большой разрядности напрямую затрагивает основания современной физики, поскольку именно такой квантовый компьютер с необходимостью попадает на границу между “квантовым (микро)миром” и “неквантовым (макро)миром”, которая совсем не ясна, вокруг которой строятся разные интерпретации.

Из этого, впрочем, не следует вывод, что квантовые компьютеры подходящей разрядности вообще не создадут. Но пока что трудности большие.



Комментарии (1) »

Один из занимательных и продуктивных, с онтологической точки зрения, моментов в “классических” (каламбур) квантово-механических экспериментах связан с интерпретацией результатов двухщелевого опыта: как именно так выходит, что когда отдельный квант регистрируется в конкретной точке экрана, он тут же (мгновенно) не регистрируется в других точках, в которые мог бы попасть, как показывает дальнейший ход эксперимента. Этот момент отмечал ещё Эйнштейн, в 20-х годах прошлого века (или раньше, не важно).

То есть, сам иллюстративный смысл опыта состоит в том, что фотоны, прошедшие через щель (щели), регистрируются в разных точках экрана, а статистическая картина при этом соответствует интерференции (или дифракции, как хотите). Выходит, регистрация фотона в конкретном месте экрана как-то выключает возможность регистрации этого же фотона в других местах этого же экрана; в противном случае – места для квантовой механики не остаётся. Конечно, можно предположить, что фотон всё же регистрируется сразу во всех “доступных” точках, но конкретный экспериментатор в конкретном экземпляре вселенной обнаруживает только одну точку, однако это не очень-то содержательный вариант – так всё что угодно и как угодно можно объяснить.

В других вариантах получается, что либо нужны некоторые дополнительные параметры, заранее кодирующие путь фотона, либо это некоторое поле вероятностей переносит каждый отдельный фотон по случайному набору веток дерева, построенного на пиках “волн вероятности” (концепция, с одной стороны, близкая к современному взгляду на проблему, с другой – до степени смешения сходная с “эфиром”). Интерпретация “мгновенного выключения” других точек на экране-приёмнике в двухщелевом опыте как раз и привела к формулированию неравенства Белла, а также и ко многим технически продвинутым экспериментам, связанным с этим неравенством (неравенствами). Более того, из этих же интерпретаций, из превращения вероятностей, и вырастают квантовые вычисления, но тоже пока как концепция.



Комментировать »

Продолжение темы про “пересекающиеся параллельные прямые” и, конкретно, их популярное “пересечение” “у Лобачевского”. Понятно, что параллельные не пересекаются по определению. Но именно в геометрии Лобачевского параллельные прямые, так сказать, даже больше не пересекаются, чем в евклидовой геометрии. Дело в том, что соответствующий постулат гиперболической геометрии (Лобачевского) имеет следующий смысл: “через точку, не лежащую на данной прямой, в плоскости, которая задаётся этой прямой и точкой, можно провести более одной прямой, не пересекающей данную” (у Евклида – не более одной прямой). То есть, в версии от Лобачевского не только можно бесконечно много построить прямых, проходящих через точку и “параллельных” данной (“параллельных” здесь в кавычках потому, что используется в смысле значения из классической евклидовой системы), но и, в процессе построения, возникают как бы две “параллельности”: то есть, появляются граничные прямые, которые параллельны данной “влево” и параллельны “вправо” (сколь бы странным это ни показалось). Все прочие параллельные формируют пучок, зажатый внутри углов, образуемых двумя граничными прямыми. Собственно, именно эти две граничные прямые, дающие углы параллельности, и определяются как параллельные в этой геометрии. Строгое определение и свойства параллельности в геометрии Лобачевского порождают богатые её интерпретации. Однако даже и просто две прямых, проходящих через точку и не пересекающих данную, это уже существенно больше, чем одна у Евклида.



Комментировать »