Логичное развитие навигационных приложений в смартфонах – использование, в дополнение к ненадёжной спутниковой навигации, сети наземных маячков: Google уже встраивает поддержку в своё приложение. Понятно, что концепция совсем не новая (наоборот – это возврат к системам, действовавшим до появления GPS), но тут речь про массовый заход со стороны потребительских устройств с GPS, а это уже новое направление. Пока что речь про маячки в туннелях, но, понятно, подход легко переносится и на другие ситуации.



Комментарии (1) »

Из очевидных, – казалось бы, – особенностей обработки радиосигналов: определять координаты (точечного) источника радиосигнала можно и при помощи одного приёмника, если этот приёмник движется, знает свою траекторию, а также знает параметры сигнала источника в точной привязке ко времени. Тогда можно вычислить рассогласование (по фазе) между сигналами в разных точках траектории приёмника, это рассогласование позволит построить “фазовый фронт”, а по его “кривизне” уже можно рассчитать координаты источника. Грубо говоря, если передатчик-пищалка излучает “чистую синусоиду”, то, определив фазу в одной точке, можно переместить приёмник и посчитать рассогласование фаз между этими точками (но, конечно, нужно учитывать, что не произошло перехода через целый период). На этом же геометрическом принципе основано синтезирование антенных апертур.

Вовсе не обязательно зацепляться именно за “чистые гармоники”, как в простом примере выше, годится произвольный сигнал, характеристики которого известны заранее в развёртке по времени. То есть, фиксируется опорный кадр времени “внутри сигнала” в начальной пространственной точке приёмника, потом новые кадры, записанные в других точках, сдвигаются по времени к опорному кадру – сдвиги как раз и дают нужные данные: разницу в расстоянии до источника. Ну или, если хотите, можно считать, что в начальной точке синхронизируется временная шкала, а потом измеряется расхождение в других точках (это основа радионавигации). Да, схема полностью полагается на предсказуемость свойств сигнала, потому что в двух разных точках этот сигнал измеряется в разное время. И если сигнал передатчика совсем уж непредсказуем, то возникнут проблемы, поскольку непонятно, что с чем сравнивать, и таки придётся использовать несколько приёмников с синхронизацией внешнего времени. Однако очень многие современные сигналы, – в том числе, носители “цифровых каналов связи”, – имеют “внутри” подходящие метки – синхроимпульсы различного типа.



Комментировать »

В продолжение записки про OBD-шину и приложение-навигатор “Яндекса”, которое страдает от помех GPS (или помех другой системе спутниковой навигации). Я несколько лет назад описывал, как, в принципе, работает GPS-спуфинг. Что касается данных OBD в этом контексте (оставим безопасность систем автомобиля для другой записки): OBD позволяет, например, получить в реальном времени данные о (расчётной) скорости движения автомобиля – это уже довольно много. То есть, если навигационный приёмник попал “под помеху”, то, предположим, оказывается, что по данным OBD автомобиль движется, а согласно сигналу спутниковой навигации – стоит на месте. Соответственно, данные о скорости из OBD позволяют центральному серверу не только обнаружить спуфинг, но и получить некоторые характеристики сигнала помехи, сравнивая данные, поступающие от многих приложений, которые имеют доступ к локальным данным OBD. Спуфинг, конечно, можно обнаружить и без OBD, я не так давно писал:

Так вот, если у вас есть устройства “на местах”, которые приносят дополнительную информацию, а не только “координатные данные” GPS, то можно на центральном сервере выстраивать динамику изменения реального навигационного поля по сравнению с моделью, учитывающей только положение и состояние спутников. Это позволяет не просто получить корректирующую величину для всех участников системы, но также увидеть возникающие на местах пространственные дефекты и искажения с развёрткой по времени (то есть, не просто спуфинг), что весьма ценно.

Однако каждый дополнительный источник информации тут сильно помогает. Ну, возможно, сравнительный анализ данных от навигаторов – реализовать слишком сложно, так как это требует большой разработки. А вот показатель скорости, поступающий от автомобиля через OBD, предоставляет существенно более простой способ обнаружения, хотя бы, сбоев навигации. Выстроить эффективную коррекцию по данным OBD вряд ли получится, поскольку слишком разнится качество данных, но предоставить минимальные поправки и визуальный флаг наличия помехи в интерфейсе – нетрудно. В качестве бонуса – полные данные о конкретном автомобиле (удобно наполнять базу – можно техническую проверку проводить, формировать отчёты) и даже возможность, потенциальная, прямо влиять на работу его агрегатов.



Комментировать »

Пишут, что “Яндекс” рассылает концепцию некоторого устройства, которое подключается к информационной/управляющей системе автомобиля (OBD) и использует данные для “коррекции GPS” (на случай сбоев) в навигационном приложении, работающем на смартфоне. Это, конечно, вовсе не будет “инерциальной навигационной системой”, но помочь может. Вот только сама идея предоставить прямой и максимально полный дистанционный доступ к электронной системе автомобиля некоторому внешнему сервису – имеет много побочных эффектов. Так что, возможно, это какое-то ошибочное сообщение, приписываемое “Яндексу”. Посмотрим.



Комментировать »

Сообщают, что “Яндекс” в своих навигационных приложениях начал как-то учитывать влияние спуфинга GPS, используя дополнительные данные (WiFi и пр.). Кстати, я в 2018 году писал, что “центральный сервер мог бы определять наличие GPS-спуфинга на основе анализа данных, поступающих от множества устройств”. Вообще, не ясно, занимается ли чем-то таким сервис “Яндекса”, но если у вас есть множество устройств и центральная точка сбора данных, то можно разные интересные вещи измерять.

Так, навигационное поле, формируемое гражданским сигналом GPS, можно достаточно точно рассчитывать для произвольной точки поверхности Земли, в том числе, с опережением или отставанием по времени. Для этого не нужно устанавливать приёмник в той точке, для которой выполняется моделирование. Да, тут необходимо подчеркнуть, что это всё за вычетом искажений, вносимых постройками и пр. – но, собственно, в этом и состоит интересная часть. К сожалению, от обычного смартфона не удастся получить детальной информации о сигнале GPS, как его видит приёмник, но, тем не менее, часть данных, коррелирующих с сигналом, всё же приходит. Смартфон может дополнительно собирать сведения о сигналах WiFi, о GSM, о передатчиках Bluetooh (и не только). Так вот, если у вас есть устройства “на местах”, которые приносят дополнительную информацию, а не только “координатные данные” GPS, то можно на центральном сервере выстраивать динамику изменения реального навигационного поля по сравнению с моделью, учитывающей только положение и состояние спутников. Это позволяет не просто получить корректирующую величину для всех участников системы, но также увидеть возникающие на местах пространственные дефекты и искажения с развёрткой по времени (то есть, не просто спуфинг), что весьма ценно.



Комментировать »

Пишут, что в Штатах в проект бюджета минобороны на 2021 год включили статью, посвящённую созданию навигационных систем, которые не зависят от GPS. Соответствующие системы должны быть предложены в 2023 году, то есть, совсем скоро. Озвученная причина – рост эффективности помехопостановщиков GPS: действующие в разных “горячих точках” силы и формирования регулярно сталкиваются с практической бесполезностью навигационных приборов, полагающихся на GPS, в том числе, на военный сигнал. Несколько лет назад я довольно подробно описывал то, как устроен спуфинг GPS. Не приходится сомневаться, что принципы спуфинга остались те же, а вот аппаратурная составляющая за это время наверняка сильно развилась.

Вообще, благодаря достижениям современной твердотельной электроники, сделать точный, надёжный, компактный и относительно дешёвый навигатор, основанный на приёме сигнала GPS – гораздо проще, чем, например, независящую от внешних сигналов инерциальную систему. Поэтому все держатся за GPS (ну и, опять же, финансирование создания и выведения на орбиту спутников, но это из другой области история). Основной проблемой для инерциальных систем является быстро накапливающаяся погрешность, причём, чем дешевле, меньше и проще система, тем быстрее падает точность. Скорее всего, возможны довольно устойчивые варианты на базе “микромашин”, но их только разрабатывают. Поэтому интересны комбинированные решения, где неточная инерциальная система регулярно и часто (например, раз в минуту) корректируется по внешнему сигналу, который, к тому же, сложно испортить помехой.

Одним из весьма эффективных вариантов оказывается использование в качестве источника такого сигнала большого количества космических аппаратов с общими синхронными часами, находящихся на низкой орбите, с которыми возможен обмен широкополосными сигналами. То есть, это уже не GPS. Это – в точности схема “спутникового Интернета”, предложенная, например, SpaceX (Starlink).

Как может помочь такая схема? Во-первых, есть возможность использования широкого спектра частот для связи со спутниками (в обе стороны, заметьте) – это означает, что можно применять замаскированные шумоподные сигналы: коррелятор, которому известен действующий секретный ключ, сможет успешно выделять и накапливать полезный сигнал спутника, распределённый псевдослучайным образом по полосе в несколько сотен мегагерц. Во-вторых, наличие на спутниках антенн с активным синтезом апертуры позволяет формировать достаточно узкие лучи – эти лучи могут быть направлены конкретному наземному пользователю, доставляя персональный сигнал (понятно, что точность формирования пятна приёма – сечения луча – всё равно, даже в идеальных условиях, составит сотни метров, но этого более чем достаточно). В-третьих, наличие широкого и доступного всем наземным терминалам (а не только станциям управления) канала в сторону спутников поможет активной коррекции сигнала в ответ на изменение обстановки в эфире, наблюдаемой конкретным приёмником.

Разберём все эти аспекты подробнее. Первый аспект – широкополосный сигнал. Современный сигнал GPS – узкополосный, более того, он использует кодовое разделение для каналов разных спутников. Широкая полоса делает возможным накопление коррелятором сигнала не только по времени, но и по частоте, а это существенно увеличивает возможности по повышению чувствительности. Такой “двумерный” подход вообще несравнимо богаче в плане кодирования, чем “одномерное” накопление по времени. При этом потенциальный помехопостановщик оказывается в сложной ситуации, так как ему нужно одновременно закрывать большую полосу, что требует много энергии даже в том случае, если помеха работает избирательно. Вообще, точно такая же техника опережающей отстройки от активных помех давно известна в радиолокации – излучатель локатора передаёт зондирующий сигнал на нескольких несущих частотах, при этом использует отражённый сигнал, который соответствует только одной из этих частот (ну или некоторой сложной комбинации нескольких).

Аспект второй – формирование узкого луча для канала в сторону наземной станции. Главное преимущество состоит в том, что помехопостановщику становится трудно принять тот же сигнал, который получает приёмник наземной станции. Конечно, всегда есть отражения, “боковые лепестки”, вторичное излучение и прочие эффекты, но их анализ в целях выявления полезного кода – несравнимо сложнее, чем приём общего сигнала. Вспомним, что сигнал ещё и кодируется индивидуально, с псевдослучайной заменой частот. Дополнительное преимущество – наземный приёмник получает больше возможностей по отстройке от простых широкополосных помех на основании направления на источник помехи. Отдельно нужно рассматривать возможность согласованного формирования лучей несколькими спутниками – тут и точность формирования “пятна” можно повысить, и защиту сигнала улучшить.

Третий аспект – индивидуальный канал в сторону спутников. Приёмник, используя этот канал и ключи аутентификации источника, может безопасно выработать общий со спутниковым источником сигнала секретный ключ, а далее периодически этот ключ заменять. Секретный ключ нужен для формирования псевдослучайной последовательности, задающей непредсказуемые для третьей стороны модуляцию и кодирование полезного сигнала, передаваемого спутником. А обнаружив эффективную помеху, если она всё же возникла, терминал может её непосредственно измерить и запросить смену кодирования, либо перейти на другую конфигурацию спутников.

Именно эти три аспекта, если их сложить вместе, позволяют создать хорошо защищённую от помех точную навигационную систему. Скорее всего, как отмечено выше, система будет комбинированной: спутниковый сигнал служит для коррекции автономных инерциальных систем. При этом спутниковые терминалы, требующие достаточно больших по размерам и тяжёлых антенн (ФАР), могут находиться на опорных станциях, например, на автомобилях или самоходных роботах, а носимый вариант навигатора, также имеющий встроенную инерциальную систему, будет взаимодействовать по радио с опорной станцией.

Что касается расположения спутников на низкой орбите: это снижает задержки, как и в случае организации интернет-доступа, а большое количество спутников (также диктуемое низкой орбитой) добавляет ещё один слой перемешивания: приёмник может выбирать сложные конфигурации спутников, используемых им в данный момент.

Естественно, Starlink – только один из примеров реализации подходящей технологии.

(Кстати, в 2012 году я писал о гипотетическом навигаторе, работающем без GPS.)



Комментарии (1) »

Что может сделать небольшой “гражданский дрон” (беспилотник) в случае, если из-за помех нет связи с пультом управления и также потерян сигнал спутниковой навигации? Понятно, что самое простое – это попытаться относительно медленно спуститься вниз и приземлиться. Такой вариант обычно и запрограммирован. Но оператору хотелось бы, чтобы дрон вернулся к нему в любом случае, если не точно в точку старта, то хотя бы оказался неподалёку от неё.

Понятно, что если навигационная полностью система полагается на сигналы спутников (пусть это GPS, не так важно), то в условиях, когда эти сигналы недоступны из-за помех, беспилотник уже не может не то что вернуться в точку старта, но и нормально продолжать полёт. Конечно, проблему решает автономная инерциальная система навигации. Это самый надёжный вариант.

Качественная и надёжная инерциальная система заметно повысит стоимость беспилотника: комплектующие для точной и лёгкой системы могут оказаться дороже, чем сам аппарат-носитель – речь ведь идёт об относительно недорогом устройстве. Но, с другой стороны, можно взять дешёвые массовые сенсоры, используемые в смартфонах.

Да, точность в таком случае окажется низкой, будет накапливаться ошибка. Накопление ошибок – это основная проблема инерциальной навигации (для всех аппаратов, а не только для “гражданских беспилотников”). Даже небольшое, но непредсказуемое, “мгновенное отклонение” показателей датчиков, за несколько десятков минут полёта с интенсивным маневрированием вполне может привести к уводу измеряемых координат на сотни метров от реального положения аппарата. Но нам-то нужно решить довольно узкую задачу: автономное возвращение к оператору в критическом случае. Так что условия использования инерциальной навигации – тепличные: во-первых, пока работает спутниковая навигация, инерциальную систему можно эффективно корректировать, а история коррекции поможет фильтровать ошибки и после того, как аппарат перейдёт на полностью автономный полёт; во-вторых, возвращение к оператору должно происходить кратчайшим путём и без излишнего маневрирования, поэтому, в большинстве сценариев, автономный полёт займёт всего несколько минут, а аппарат будет стараться сохранять оптимальные для обеспечения точности “аварийной навигации” параметры ускорения. В общем, даже простая и не очень точная инерциальная система – справится.

Тут есть ещё один, весьма важный, момент: дрон мог находиться за каким-то препятствием, например, за углом здания – поэтому вернуться по прямой не выйдет, а для того, чтобы проложить безопасную траекторию, нужно знать, где возможен безопасный полёт. Это означает, что на борту требуется карта, на которой обозначены коридоры безопасного возвращения. Это, впрочем, не слишком сложная проблема: просто, перед началом полёта, придётся разметить эти самые коридоры, ну или надеяться на то, что дрону повезёт.

Современный дрон содержит камеру, часто – не одну. Это хорошее подспорье для создания автономной навигации. Так, параметры движения можно определять по перемещению в поле зрения объектива “текстур” поверхности, над которой происходит полёт. Этот приём некоторые разработчики любительских дронов уже используют. Другой вариант – применение простого машинного зрения: у оператора может быть с собой некая визуальная метка (табличка с QR-кодом, например), в случае потери связи, оператор показывает эту метку в сторону дрона – если последний находится в прямой видимости, то он сможет обнаружить метку с помощью камеры и лететь в её сторону (дальность легко вычислить, зная оптические параметры объектива). Понятно, что метка должна быть не слишком маленькой, а объектив и камера – позволять её обнаружить.

Неплохим развитием этой идеи является какой-либо активный оптический канал, например, лазерный фонарик, который светит в сторону дрона некоторым модулированным сигналом. Во-первых, подобному сигналу на практике сложно поставить помеху (из-за того, что приёмник может быть выполнен узконаправленным, а помехопостановщик не сможет принимать подавляемый сигнал, если только не находится между дроном и источником, либо не видит каких-то отражений); во-вторых, сам сигнал может передавать дрону значение дальности до источника, а азимуты – определит приёмник.

Итак, даже у любительского дрона может быть целый арсенал средств, обеспечивающих более или менее надёжный возврат к оператору и в полностью автономном режиме, и в режиме, когда оператор подаёт аварийный опорный оптический сигнал. Но, конечно, в коммерческих гражданских дронах эти методы вряд ли реализуют.



Комментарии (1) »

В заметке, объясняющей, как работает GPS-спуфинг (подделка сигнала GPS, либо другой спутниковой навигационной системы), упомянута группа приёмников, попавших под одну и ту же помеху. Например, несколько приёмников под воздействием простого спуфинга (из одного источника) переместятся в одну виртуальную точку, но, так как расстояние от конкретного приёмника до источника помехи может различаться, получат рассогласование GPS-времени. Это рассогласование можно обнаружить.

Посмотрим на онлайн-навигаторы, работающие на базе смартфонов. Эти приложения отправляют данные о местоположении и параметрах движения конкретного смартфона на центральный сервер (стандартная практика, позволяющая, например, собирать информацию о транспортном трафике). Соответственно, центральный сервер мог бы определять наличие GPS-спуфинга на основе анализа данных, поступающих от множества устройств. Скажем, несколько сотен устройств, согласно данным GPS, внезапно и синхронно “конденсировались” в одну точку – это уже надёжный признак, что все они оказались в зоне спуфинга. Смартфон видит дополнительные данные, которые можно использовать для геопривязки: идентификаторы базовых станций GSM, параметры точек доступа WiFi. Перепрыгнувшие в одну точку устройства, которые в реальности находятся достаточно далеко друг от друга (сотни метров), будут видеть различную конфигурацию этих вспомогательных параметров. Получаем ещё один признак наличия спуфинга. Возможны и различные другие алгоритмы, учитывающие скорость движения смартфона, данные от акселерометра и так далее.

Смысл обнаружения спуфинга состоит в том, что приложение-навигатор сможет вывести предупреждение и перестать показывать пользователю заведомо неверные навигационные данные.



Комментировать »

Для того, чтобы ракета поразила цель, требуется информация о том, где данная цель находится. Рассуждение, конечно, очевидное. При этом возможны ситуации, когда сторона, обладающая ракетой нужной мощности и дальности, не обладает подходящими средствами разведки и наведения: например, цель – в море, а нет спутниковых средств или даже просто РЛС, находящихся на кораблях.

Предположим, что присутствует третья сторона, которая имеет и спутниковые средства, и различные РЛС, но эта сторона не должна запускать собственных ракет. Однако эта третья сторона может различными способами помочь с наведением чужой ракеты (негласно). Осуществлять командное наведение, подняв прямой радиоканал к ракете – не самый лучший вариант. Во-первых, он требует полного доверия со стороны запускающих ракету – ведь навести её теперь можно не только на предназначенную цель (понятно, что остаются варианты с самоликвидацией и прочими схемами “управления доверием”, но это излишнее усложнение). Во-вторых, даже если радиоканал зашифрован, факт прямой передачи управления ракетой может быть обнаружен и задокументирован, а это совсем не то, что хотелось бы афишировать нашей “третьей стороне”, формально “сохраняющей нейтралитет”.

Есть другое решение: третья сторона может непрерывно выдавать в эфир навигационный радиосигнал, который привязан к текущим координатам цели. Скажем, это может быть даже набор сигналов, которые кодируют координаты цели относительно некоторой заранее оговоренной точки с известным положением в виде разности опорных сигналов, с той или иной модуляцией. То есть, фактически, получается развитие классической системы радионавигации (Loran-C, “Чайка/Тропик” и др.), которая может работать на относительно небольшой частоте, при этом возможны загоризонтные варианты. На борту ракеты находится приёмник, который корректирует работу инерциальной навигационной системы, принимая опорный навигационный сигнал. Понятно, что сигнал будет доступен для приёма всем, но так как речь идёт о подвижной цели, то вычисление координат можно засекретить, заранее передав необходимые коды коррекции стороне, которая проводит пуск ракеты. Впрочем, тут тоже есть подводные камни: передача кодов коррекции, если она будет задокументирована и сопоставлена с записанным из эфира навигационным сигналом, приводит к прямому раскрытию роли “нейтральной” стороны.



Комментарии (2) »

CompassСпутниковая навигационная система представляет собой сложный комплекс, однако логика работы GPS, с точки зрения конкретного приёмника, весьма проста. Приёмник, измеряя разницу между временем поступления сигнала от спутника и временем генерации этого сигнала, определяет расстояние до спутника-источника. Так как координаты спутников в заданный момент времени известны с высокой точностью, приёмник может вычислить собственные координаты. Упрощённое математическое описание: каждый спутниковый сигнал даёт одно уравнение, определяющее геометрическое место точек, где может находиться приёмник; три спутника – позволяют построить систему из трёх уравнений, и, таким образом, найти точные координаты в пространстве (“пограничные” неоднозначности оставляем за скобками). Для вычислений требуется точное время, а большинство приёмников GPS не содержат достаточно точных встроенных часов, поэтому, для удаления неоднозначности по времени, требуется ещё одно уравнение, позволяющее получить точное время – это уравнение даёт четвертый спутник. Таким образом, для высокоточного определения координат приёмнику достаточно сигналов четырёх спутников. Естественно, на практике присутствуют помехи и различные аппаратурные искажения, но логика именно такая.

В GPS не предусмотрено аутентификации навигационной информации. За исключением военного сигнала, который сейчас не станем рассматривать, никакой защиты не предусмотрено. То есть, гражданский GPS-приёмник ориентируется только на полученные “из антенного входа” данные. Уже исходя из этого несложно догадаться, что если атакующая сторона имеет возможность управлять электромагнитной картиной на антенне приёмника, то она может “нарисовать” для этого приёмника любую виртуальную конфигурацию спутников и, в общем случае, приёмник не сможет отличить виртуальные координаты от подлинных. Такая активная помеха называется GPS-спуфингом, осуществимость продемонстрирована довольно давно. (На практике, из-за того, что “нарисованная” картина не бывает идеальной, некоторые возможности обнаружить спуфинг у приёмника есть.)

Так как сигналы гражданского GPS полностью открыты, то постановщик помехи может генерировать их с опережением по времени. То есть, можно предсказать, каким будет сигнал в заданной точке пространства в заданное время. Этот момент позволяет компенсировать затраты времени на генерацию динамического поддельного сигнала, да и вообще – практически полностью снимает ограничения для системы спуфинга: она может имитировать любые конфигурации спутников и приёмника (военный сигнал тут защищён существенно лучше: спуфинг оказывается ограничен воспроизведением ранее полученных сигналов, но с задержкой).

Система спуфинга будет иметь следующую базовую конфигурацию: генератор сигнала GPS передаёт имитацию сигнала нескольких спутников через антенну, на частоте GPS (в этой системе одна частота используется всеми спутниками, сигналы разделяются при помощи кодирования); при условии, что уровень имитирующего сигнала несколько превышает уровень сигнала реальных спутников, GPS-приёмник будет “захватывать” поддельный сигнал и вычислять положение на его основе. В данной схеме все приёмники, попавшие в зону действия спуфинга, вычислят одни и те же координаты (окажутся в одной и той же “виртуальной” точке пространства), при этом у приёмников, находящихся (реально) в разных местах, автоматически возникнет небольшое рассогласование по времени. Сигнал GPS – периодический, соответственно, даже “статический” спуфинг требует динамической передачи одних и тех же по фактическому содержанию навигационных сообщений. Помеху можно сделать уводящей – такая помеха имитирует перемещение приёмника по заданной спуфером траектории.

Сигнал GPS спроектирован таким образом, чтобы сделать возможным приём на слабом уровне, ниже шумов. Приёмники используют тот или иной коррелятор, позволяющий получить достаточное соотношение сигнал/шум. Это, с одной стороны, означает, что сигнал спуфинга может совсем незначительно превышать мощность подлинного сигнала – коррелятор всё равно “зацепится” именно за него (другими словами: обнаружить факт наличия спуфинга по возросшей мощности сигнала – не выйдет). С другой стороны, GPS-приёмник должен захватить сигнал (это известный всем пользователям GPS процесс), и в дальнейшем работать с захваченными параметрами, сопровождая их. Этот момент сопровождения имеет важное значение: активную уводящую помеху конкретному приёмнику можно поставить так, что срыва сопровождения не произойдёт. Однако в случае с более простым спуфингом, приёмник, оказавшись в зоне действия активной помехи, потеряет сопровождаемый код и будет вынужден захватывать спуфинг-сигнал заново – этот процесс будет заметен. Постановка скрытной уводящей помехи гораздо сложнее, чем наведение статичного спуфинга. А статичный спуфинг будет проявляться в потере сигнала, с последующим восстановлением в совсем другой (имитируемой) точке пространства. Большинство навигаторов устроены крайне просто, поэтому отметка на карте перепрыгнет в произвольное место, заданное системой спуфинга (хотя этот прыжок мог бы обнаружить даже самый примитивный алгоритм).

Для системы спуфинга гражданского сигнала не имеет значения, в какую именно точку пространства “перемещать” попавшие в зону действия помехи устройства: как было отмечено выше, из-за того, что гражданский сигнал никак не защищён, его можно предвычислять без ограничений на достаточно больших интервалах времени.

Технически, система спуфинга может быть построена на основе лабораторного генератора сигналов GPS – такие специализированные устройства есть, они позволяют генерировать картину для большого числа спутников, а предназначены для отладки GPS-приёмников. В простейшем случае, достаточно вывести сигнал генератора на внешнюю антенну. Возможно построение системы спуфинга на основе того или иного набора SDR (Software-defined radio – программно-определяемая радиосистема), для них есть соответствующее программное обеспечение. Примерные затраты (на систему с SDR) – не более 5 тыс. долларов США. Естественно, есть и готовые решения именно для спуфинга.

Нужно отметить, что отдельную проблему представляет создание поля спуфинга, прозрачно действующего на различные устройства, находящиеся, например, в условиях городской застройки: здесь будут мешать отражения сигнала помехи зданиями, а также возникающие радиотени, конфигурация которых для подлинного сигнала, поступающего со спутников, и сигнала помехи – сильно различается.

Не менее интересен и аспект постановки помехи группе приёмников GPS, с сохранением их пространственной конфигурации относительно друг друга. Предположим, что у нас есть три приёмника, которые находятся на расстоянии нескольких сотен метров друг от друга, и расстояния между ними известны. В случае обычного GPS-спуфинга, после того, как приёмники захватят ложный сигнал, они “переместятся” в одну точку. Этот факт может являться основой для построения системы обнаружения спуфинга. Постановка помехи с сохранением конфигурации группы – оказывается чрезвычайно сложной задачей, решаемой, скорее, теоретически, потому что потребуется вычисление индивидуальных поддельных сигналов для каждого приёмника, а также корректная доставка этих сигналов до антенн, что требует точной информации о местоположении последних.

Для обнаружения GPS-спуфинга предложены различные методы. Например, возможно выделение ложного сигнала на основании определения направления на его источник. Определить направление можно сравнивая фазы сигнала на нескольких антеннах. Можно использовать в качестве дополнительного источника информации доплеровский сдвиг частот, это актуально для движущихся объектов. Есть решения, основанные на использовании военного сигнала GPS в качестве опорного (без необходимости знания секретного ключа) – здесь проводится обнаружение расхождений между принятым гражданском сигналом и параметрами военного. (Военный канал, впрочем, может быть просто задавлен шумом.) Достаточно очевиден вариант с инерциальной навигационной системой: такая система автономна, поэтому может обнаружить противоречие в данных, поступающих от GPS-приёмника.

А вот каких-то простых методов противодействия спуфингу – нет. Его только можно относительно надёжно обнаружить, в простых случаях. Впрочем, типичный “навигатор в смартфоне” не умеет делать даже этого, а пользователи продолжают ошибочно считать GPS надёжной системой и слепо полагаться на её данные.



Comments Off on Подделка сигнала GPS (GPS-спуфинг)

У постановки помех GPS – история давняя. Это интересная тема. Вообще, что касается именно вопроса точной навигации, то блокирование сигнала GPS имеет свои ограничения: дело в том, что есть инерциальные системы навигации, они автономные, а GPS для них полезна лишь в том смысле, что позволяет скорректировать накопленную ошибку. Но если навигационный сигнал недоступен только на небольшой территории, то ограничения для инерциальных систем становятся не так актуальны: ошибка просто не успеет накопиться.

Но не нужно забывать, что GPS – это не только навигация. Так, в рамках разумной современной модели угроз, постановка помех GPS нужна для того, чтобы заглушить опорный сигнал синхронного времени, который, без помехи, может быть использован в распределённой сети радиоэлектронных устройств, действующих в районе прикрываемой территории. То есть, GPS позволяет синхронизировать с высокой точностью время на разных автономных пассивных устройствах, тем самым эти устройства могут действовать и обрабатывать информацию согласованно.

Реализовать в компактном электронном устройстве систему синхронного времени, обладающую сколько-нибудь высокой точностью (хотя бы миллисекундной) на продолжительных интервалах времени – чрезвычайно сложно: нужны стабильные генераторы частоты, а это не просто большая редкость, но и температурная компенсация/стабилизация, коррекция ошибок, и так далее, и тому подобное. При этом, если устройство пассивное, то в любом случае возникает проблема синхронизации между несколькими узлами сети. GPS является тут просто идеальным решением, так как предоставляет единый сигнал точного времени, независящий от работы принимающих устройств.

Для чего нужно синхронное время? Например, для построения сверхчувствительной распределённой радиоприёмной системы на базе компактных и относительно простых узлов. Для точного определения, на базе нескольких синхронных приёмников, местоположения всяких источников сигналов, причём, к этим сигналам относятся побочные излучения, которые позволяют определять местоположение микроэлектронной техники, для трансляции сигналов не предназначенной. Другая задача – передача данных в том или ином “малозаметном” режиме связи (различные LPI-системы): приёмники и ретрансляторы должны иметь общее время, чтобы правильно настроить параметры корреляции, позволяющие выделить замаскированный сигнал, который для “стороннего наблюдателя” неотличим от шума (синхронное время здесь только один из инструментов, но весьма важный). И это неполный список.

А вот “пропадание навигации” в смартфоне – всего лишь побочный эффект.

(Развитие темы: подделка сигнала GPS, GPS-спуфинг.)



Comments Off on Помехи GPS