DARPA заказывает новую программу POSYDON, результатом которой должно стать построение в океане опорной навигационной сети для подводных аппаратов. В качестве подрядчика выбрали Draper (это известная Лаборатория Чарльза Старка Дрейпера, вышедшая из Массачусетского технологического института).
Из описания следует, что речь идёт о размещении в океане неких опорных устройств, которые будут передавать под водой навигационный сигнал, наподобие GPS (последняя, как известно, под водой не принимается – нужно подвсплывать). Подводный аппарат, таким образом, получает возможность вычислять собственное местоположение по принятым сигналам, зная координаты опорных устройств и, соответственно, расстояние до них. Решение предназначено для подводных аппаратов, скрытно проникающих в особо охраняемые области. Конечно, пишут, что и для гражданских применений такая навигация сгодится – в принципе, действительно, можно придумать гражданские аппараты, которым нужна скрытность и которые не должны всплывать для коррекции, дабы не обнаружить своё присутствие.
Кстати, для скрытной коррекции инерциальной навигационной системы аппарата по GPS вовсе не обязательно всплывать всему аппарату, можно выпустить небольшой специальный буй. Опыт подводных лодок показывает, что такой буй даже может отстать от аппарата на значительное расстояние, прежде чем всплыть и, теоретически, обнаружить своё присутствие. Однако наличие опорной навигационной сети переводит ситуацию на иной уровень: этой сетью могут пользоваться миниатюрные, относительно дешёвые аппараты, обладающие при этом большой автономностью. В качестве фантастического варианта – переносимые течениями, и, таким образом, совершенно бесшумные. Инерциальная навигационная система, несмотря на весь прогресс, будет накапливать ошибки. Чем дольше аппарат находится в автономном режиме, без коррекции, тем больше будет ошибка. Традиционные методы привязки координат, опирающиеся на картину рельефа дна, требуют активного измерения этой картины при помощи сонара (пассивная оптика под водой не очень помогает). “Подводный GPS” – напротив, пассивный.
Что касается подводной передачи навигационных сигналов, то, естественно, вряд ли будет использована радиосвязь, по понятным причинам. Акустический сигнал под водой может распространяться на достаточно большие расстояния. Так что, учитывая возможности по цифровой обработке и то, что для передачи навигационных данных не требуется большая информационная ёмкость, схема вполне реальна. Другое дело, что для противодействия могут быть использованы помехопостановщики.
Занятно, кстати, представить, как такой аппарат незаметно забирается в район базирования подводных лодок, залегает там на некоторое время, а после выхода лодки – автоматически прикрепляется к её корпусу (при должном подходе, это вполне можно проделать незаметно). В нужный момент аппарат перестаёт быть пассивным и, по команде, переданной через ту же самую опорную сеть, начинает громко транслировать текущее местоположение лодки в окружающий океан.
Комментарии (3) »
СМИ пишут, что Военно-морская академия США “возвращается к преподаванию астрономической навигации“. Но, похоже, речь всё же идёт о курсах практического обращения с секстантом. Вряд ли астрономическую навигацию не преподавали (как там пишут в статье, якобы, с конца 90-х годов): потому что не понятно, как вообще можно строить курс по навигации, обойдя астрономию. Собственно, для изучения GPS тоже требуется знание астрономических основ (а для подробного изучения – ещё и специальная теория относительности потребуется, да). Тем не менее, сама подача “возвращения секстанта” – занятна. Обоснованием служит наличие киберугроз. Последние стали настолько универсальным “пугателем”, что сейчас разве что выпуск нового сорта мыла не связывают с киберугрозами (видимо, недолго ждать).
Естественно, GPS не является абсолютно надёжным инструментом. Систему можно сломать, особенно если речь идёт о конкретном корабле. Поэтому полагаться только на GPS неверно. Однако кроме секстанта и справочников – есть и другие навигационные инструменты. Более того, чисто астрономические методы также давно автоматизированы: по Солнцу, Луне и звёздам может ориентироваться автомат, снабжённый оптикой и вычислителем.
Секстант, несомненно, полезен, но очень неэффективен. Особенно в случае с современным кораблём, где системы управления всё равно электронные. Полагать, что возможна ситуация, когда определённое вручную местоположение может сыграть какую-то роль на современном корабле, где, видимо, уже отказали все электронные системы, но неуправляемый корпус ещё продолжает куда-то плыть, и вот нужно уже дать ответ на удивлённый возглас капитана “а где же мы?” – ну, это что-то из области литературных рассказов. Хотя, конечно, придумать подобные кинематографические сценарии несложно. Сложно сделать их реалистичными.
Всё это никак не отменяет необходимости изучения секстанта на курсах штурманов. И не отменяет существования других приёмов навигации, кроме как основанных на использовании GPS или секстанта с линейками, циркулями, транспортирами и таблицами.
Комментарии (6) »
Популярная новость – DARPA продвигает разработку новых автоматических систем навигации, независимых от GPS. Основные недостатки спутниковой навигации растут из того факта, что она использует сильно удалённый от навигационного приёмника, внешний “базис” – то есть, сами спутники. Отсюда и возможные проблемы с получением сигнала, который, к тому же, могут испортить разными помехами. С другой стороны, для практически полезной навигационной системы всё равно нужны некие опорные точки, и спутники, передающие навигационный сигнал, не самый плохой вариант. Пожалуй, сошлюсь на старую заметку по этой теме, трёхлетней давности – “Автоматический навигатор, без спутников“.
Вообще, инерциальная система с суперсовременными гироскопами и акселерометрами выйдет весьма точной, особенно для типичных задач применения портативных навигаторов – передвижения по незнакомой местности. Устройство может быть нечувствительно к ударам и разного рода электромагнитным помехам. А если в распоряжении подразделения несколько навигаторов, то они даже могут корректировать друг друга.
Комментарии (3) »
Если автомобиль, транспортирующий станцию генерации панорам улиц, записывает ещё и идентификаторы (а также – радиотехнические сигнатуры) точек доступа WiFi, – естественно, с привязкой к местности, – то позже можно построить “навигационное поле”, используя данные о местоположении точек доступа. Не сложно предположить, что по такому навигационному полю, – особенно, если оно задано для “чужой территории”, – полетят беспилотники и прочая ракетная техника. Но насколько такое поле полезно в реальности?
Во-первых, точки доступа тухнут и перемещаются, внося искажения в навигационную карту. Конечно, достаточная плотность и разнообразие устройств уменьшают искажения, но серьёзная навигационная система всё равно должна уметь их, искажения, вычислять. Эта способность, будучи реализованной в программном коде, принесёт с собой ошибки и потенциальные проблемы с навигацией.
Во-вторых, точность навигации по WiFi оставляет желать лучшего: быстрый летательный аппарат просто не сможет использовать такую систему, так как характеристики накопления погрешности превысят все разумные ограничения. Сведения о местоположении точек WiFi могли бы быть полезны какому-нибудь роботу типа “Ленивец”, неторопливо ползущему по стенам домов. Но это весьма экзотическое, в смысле практической пользы, устройство. По сравнению с другими источниками “опорных” радиосигналов, вроде станций GSM и радиовышек, WiFi, в городах, предлагают большее число видимых точек, а также удобный для “захвата” сигнал (из-за используемого кодирования). Но в случае каких-то катастрофических периодов – эти точки исчезнут раньше, чем прочие системы связи.
В-третьих, если вынести за скобки GPS, для беспилотников останутся доступны другие средства навигации, прежде всего – привязка к местности по визуальным ориентирам и рельефу. У наземной робототехники с этим сложнее, но раз у нас всё равно отсняты панорамы улиц, – да ещё, наверняка, с геометрией зданий, – то и наземной технике WiFi особенно не нужен: при должном математическом обеспечении на борту, по зданиям можно ориентироваться даже в случае наличия серьёзных разрушений, а вот WiFi, в таком печальном случае, уж точно станет редкостью.
Тем не менее, так как память для бортовой вычислительной системы сейчас более чем доступна, загрузить в неё и данные по точкам доступа WiFi – вдруг пригодится в какой-нибудь экзотической ситуации?
Комментарии (2) »
Спутники GPS, помимо того, что обеспечивают глобальное позиционирование или, например, общее точное время, ещё и служат платформой для штатовской системы обнаружения ядерных взрывов (другая часть этой же системы находится на несвязанных с GPS геостационарных спутниках). Система, прежде всего, нацелена на мониторинг атмосферных и наземных испытаний, но, в теории, может служить и для детектирования подземных взрывов.
Благодаря тому, что спутников GPS достаточно много и они расположены так, чтобы обеспечивать полное покрытие земного шара, система позволяет вести мониторинг всей планеты в реальном времени. Второй полезной особенностью такой космической платформы является то, что для спутников GPS положение в пространстве известно с высокой точностью. Детекторы, наблюдающие за возможными взрывами, собраны в отдельные модули, которые ставятся на спутники в качестве дополнительной “полезной нагрузки”. Используются оптические сенсоры, приёмники рентгеновского излучения, а также сенсоры, предназначенные для измерения электромагнитных эффектов (ЭМ-импульса) взрыва.
Такое вот использование GPS. Естественно, оптические системы модулей могут послужить и для наблюдения за пуском ракет, в целях предупреждения о ракетном нападении. Впрочем, для этой цели – они вряд ли эффективны.
Комментарии (1) »
(Вынесу сюда из комментов.) Как, в общих чертах, работает спуфинг для GPS? Чтобы разобраться, нужно вспомнить, что такое сама эта GPS в генеральном, так сказать, смысле. GPS позволяет приёмнику определить с высокой точностью расстояние до нескольких спутников, входящих в состав системы. Расстояние вычисляется на основе принимаемых со спутников радиосигналов, ключевыми моментами является знание точного времени, действующего во всей системе (приёмник + спутники), и информация о точном местоположении спутников в каждый момент времени. Дальше – чистая геометрия. Понятно, что для практической работы простого приёмника потребуется четыре спутника (почему, кстати, не три?), до которых известно расстояние, и так далее, и тому подобное.
Спуфинг основан на нескольких особенностях системы (речь о гражданском канале GPS). Во-первых, сигналы и информация об астрономическом движении – открытые, поэтому, используя приёмник, находящийся в какой-то точке Земли, можно точно вычислить сигнальную обстановку GPS в любой другой точке в заданный момент времени (ну, если владельцы системы не внесли специальных помех, да). Вычислить эту обстановку можно с упреждением по времени. Во-вторых, опять же из-за того, что сигналы открытые и незащищённые, а к тому же слабые, требующие накопления для детектирования навигационной информации, можно сгенерировать поддельный сигнал GPS, который будет близок к реальному. Передатчик этого сигнала может находиться на земле, где-то неподалёку от того приёмника, который спуфят – задавить реальный сигнал по мощности несложно. В-третьих, активная помеха должна изменяться, имитируя движение атакуемого приёмника. Соответствующие параметры помехи вычисляются либо заранее, либо в режиме онлайн.
Дальнейшее развитие ситуации, думаю, особых пояснений не требует: приёмник передаёт в систему управления новые координаты, изменяющиеся, система управления старается компенсировать “дрейф” – и беспилотник, который должен был висеть на одном месте, начинает снижаться и, скажем, падает.
Теперь предположим, что навигационная система использует несколько “внешних” источников навигационной информации. Например, GPS + ГЛОНАСС. С одной стороны, такая система может обнаружить расхождение между показаниями, если GPS “подспуфили”. Но не ясно, что в таком случае этой системе делать? Она не может определить, происходит ли спуфинг GPS или, наоборот, ГЛОНАСС. И почему, кстати, GPS заслуживает меньшего доверия, чем ГЛОНАСС? Если отключать навигацию при каждом расхождении показаний, то возникают новые требования к синхронности двух независимых навигационных источников. То есть, дополнительный риск отказа без всякого спуфинга.
Пусть источников для навигации – три. Добавим Galileo. В такой конфигурации можно было бы выбирать два источника, как-то совпадающие в показаниях, до некоторого порога. Проблема в том, что помехопостановщик может один из навигационных сигналов подавить, это даже проще, чем спуфить, а активную помеху поставить любому другому сигналу.
Теоретически, побороться с такой неприятной проблемой можно при помощи криптографии. Допустим, навигационные сигналы подписаны, открытый ключ для проверки зашивается в приёмник (в навигатор, хорошо), вместе с картами. Ключ можно обновлять и менять. Схемы отработаны. Теперь приёмник может определить, что он принимает поддельный сигнал. Это, правда, никак не помогает бороться с глушением сигнала полностью, но исключает проблему с “перехватом” управления тем или иным устройством, которое полагается только на спутниковую навигацию. Впрочем, в случае с криптографией, наложенной на слабые сигналы, возникает целый ряд новых проблем: как быстро проверять подпись? какой временной “фрейм” подписывать (понятно, что нельзя удостоверять каждую микросекунду сигнала)? и так далее. Поэтому, автономная инерциальная навигационная система, в качестве опорной, всё равно не помещает. Тем более, что спуфинг можно обнаруживать даже простым акселерометром.
Комментарии (19) »
В продолжение воскресной записки. У важнейшего класса подводных лодок есть ещё одна проблема при автономной подводной навигации: это пуск ракет. Так как точно определить своё местоположение лодке затруднительно, то ракеты с подводным стартом нужно оснащать специализированными навигационными системами. На практике они корректируются по дополнительным ориентирам, по звёздам. То есть, уже после старта, ошибки, которые обязательно возникнут в инерциальной системе навигации, – исправляются древнейшим из известных человечеству способов навигации. Использовать GPS тут нельзя потому, что в глобальном конфликте данная система может оказаться уже недоступной, а доставлять боевые блоки всё равно нужно точно, и с гарантией. При этом подводный старт вносит дополнительные проблемы, потому что лодка-носитель неизбежно движется в момент выброса ракеты.
Получается, что для минимизации ошибок и обеспечения дополнительной точности полёта ракет лодки должны патрулировать в районах, где есть возможность хорошо привязать собственное положение “к местности” – то есть, там, где собрано достаточно сведений об ориентирах (рельеф дна). Для привязки придётся останавливаться и замерять собственное положение, что, наверное, может лодку демаскировать. Но в условиях получения команды на пуск ракет – это уже не так уж важно.
Правда, в качестве “точек привязки” могут служить заранее расставленные буи, которые “знают” своё местоположение – в таком случае, лодке достаточно хорошо синхронизировать время с временем на буе и уже информацию о расстоянии от буя использовать для исправления ошибок инерциальной навигационной системы. Так как корректировку можно проводить из нескольких точек (если лодка движется), то уже один буй будет неплохим помощником.
Комментарии (17) »