В популярных статьях про квантовые компьютеры нередко обсуждается только “количество кубитов” и “суперпозиция”, но при этом совсем не уделяется внимание самой содержательной части – физической реализации “квантовых схем”, которые, теоретически, только и могут позволить использовать квантовый компьютер как более или менее универсальное устройство, способное сработать по тому или иному “квантовому” алгоритму. Это, в общем-то, понятно: “кубиты в суперпозиции” можно описать максимально контринтуитивно, сославшись на “противоречащую” повседневному опыту “квантовую механику”. Тем более, если не разделять логические и физические кубиты. А вот попытка рассказать о том, как же именно в квантовый компьютер “вводятся данные”, какими проводами соединяются “кубиты” – грозит большим усложнением темы, поскольку именно на этих направлениях и кроется много концептуально непонятного. Более или менее понятно только, что параметры в квантовый компьютер вводятся не методом “записи сигналов в регистры”, поскольку “сигналы” в квантовом компьютере передаются через поток вероятности, в совсем другом поле, не в электромагнитном. Так что параметры работы алгоритмов должны устанавливаться прямой модификацией квантовых схем – это аналоговые вычисления, с последующей “дискретизацией”: так в классическом арифмометре колесо с цифрами поворачивается непрерывно (как бы), а потом защёлкивается на конкретном результате. В теоретическом квантовом компьютере, математические формулы, которые неплохо описывают модели экспериментов, предлагается использовать для вычислений гораздо более широких, чем проводимые эксперименты и используемые на практике модели. Можно ли найти физические реализации, в которые отобразятся алгоритмы, а если найти можно, то какие будут ошибки и искажения – это и есть предмет, а не “количество кубитов” и “суперпозиция”.
Вообще, аналоговые вычислители, концептуально, происходят из следующего (рекурсивного) подхода: давайте возьмём некоторый физический аппарат (речь про устройство), реализующий ту или иную математическую модель, посмотрим, на какие вычислительные области можно перенести обобщённые элементы этой модели, отыщем в аппарате физические воплощения этих элементов, станем использовать их вывод для вычислений. Это весьма эффективный метод, который позволяет построить аналоговый компьютер, который едва ли не оптимальным образом решает дифференциальные (или интегральные? тут уж кому в какую сторону) уравнения численно, механически вращая физические тела сложной формы. Обратите внимание, что про данный механизм тоже можно сказать, что он “обладает параллелизмом”: ну, потому что все решения там сразу зашиты – для извлечения нужно только измерить вдоль правильной траектории. Классические счёты (с костяшками) или даже простой арифмометр – в этой концепции уже устройства, условно, “цифровые”, поскольку “дискретизация” заложена в основу конструкции – непрерывность не предполагается. Аналоговые вычислители могут работать с числами, однако никакой классический аналоговый вычислитель не может “вычислить” точно квадратный корень из двух, как действительное число, да и вряд ли это может сделать “квантовый” вычислитель. А отобразить геометрически, конечно, можно. Зато тем более не получится вывести сумму π + e.
Но, это, понятно, совсем не квантовая механика – поскольку тут не тот уровень абстракции и отсутствует преобразование вероятностей. Однако то, как представление о непрерывности отражается на измерениях, важно и для интерпретации квантовых компьютеров. Такой квантовый компьютер, с точки зрения физической реализации, тоже аналоговый вычислитель. Именно так нужно себе представлять (теоретический) квантовый компьютер, настроенный для выполнения алгоритма Шора (который тоже традиционно приводят в качестве примера, кстати). Вот у вас шкаф квантового компьютера, где схемы при помощи некоторой физической коммутации настроены на конкретное число, например, на 10807; после подачи импульса питания – можно будет прочитать результат измерения. Внутри этот компьютер содержит “неонку”, а кроме того, вероятно, сотни тысяч каких-то кубитов и прочих элементов квантовых схем, которые соединяет примерно миллион проводов. Именно так это и выглядит в теории, если поверить в то, что требуется коррекция ошибок и надёжное сохранение квантовых состояний. И тут можно вспомнить, что в популярных статьях и книжках привычно описывают как “с ростом количества частиц начинается “статистика” из которой возникает “классическая” физика для макроявлений”. Однако, когда именно это происходит в случае гипотетического квантового компьютера? Как измерять порог: по количеству ли кубитов, по количеству ли состояний, должен ли наступать означенный переход вообще? Непонятно, в какой момент и по какой шкале должен наступать переход от “квантового” к “классическому”.
Предположим, что квантовый компьютер, способный выполнить алгоритм Шора для чисел с разрядностью записи в 2048 битов, содержит миллионы физических “квантовых элементов”, обеспечивающих работу нужного количества (предположим, 6144) логических кубитов в регистрах, эти элементы и вспомогательные схемы содержат на порядки больше “квантовых элементов”, которые составляют материал самих используемых приборов. Не сделает ли уже само это количество устройство “классическим”? А если нет, то можно ли тогда просто начать реализовывать квантовые вычисления на обычных кирпичах, которые, как известно, внутри квантовомеханические? Что, если порог определяется по количеству состояний? Тогда 2^2048 может уже хватить. Именно эти моменты и мешают на практике (это известно, конечно же, если посмотреть за пределы популярных статей), но не ясно, насколько они преодолимы в принципе. Вообще, одним из ключевых моментов, приведших к формулированию квантовых механик (разных), как раз и были рассуждения о том, что при переносе предмета измерений на всё более и более “мелкие” частицы, средства выполнения измерений оказываются частью этих измерений – опять рекурсия (см. выше). Для квантовых компьютеров это означает, что реализация квантового преобразования Фурье в алгоритме Шора с нужной точностью для практических чисел потребует тысяч кубитов, которые чрезвычайно сложно уложить в малое, по квантовым меркам, пространство. При этом ошибки в представлении результата могут “квантоваться”, потому что это в уравнениях используются комплексные числа, но совсем не факт, что аксиома непрерывности должна прямо транслироваться в физику измерительного оборудования.
Комментировать »
Предполагается, что постквантовые криптосистемы – это защита от взлома на квантовом компьютере. На гипотетическом квантовом компьютере, который может реализовать соответствующие алгоритмы – алгоритм Шора, прежде всего. Конечно, современный уровень “хайпа” вокруг квантовых компьютеров уступает уровню “хайпа” вокруг “искусственного интеллекта”, тем не менее, квантовых компьютеров, подходящих для атак на используемые сейчас криптосистемы, ещё никто не показал. И даже ничего близко похожего – не показали. Но если почитать, например, статью про квантовые вычисления даже в англоязычной “Википедии”, то там почему-то уверенно обсуждаются “практические особенности”. Но до “практики” же ещё очень далеко. Пока что даже исследовательские алгоритмы, призванные показать “квантовое превосходство”, требуют создания специальных задач, которые структурно оптимизированы не в направлении вычислительной полезности, а в направлении использования свойств, потенциально доступных на имеющихся сейчас квантовых устройствах (см. boson sampling). Это естественно, весьма логично для этапа теоретических исследований на экспериментальном оборудовании, но не относится к практическому применению универсальных компьютеров.
В популярных изложениях нередко сильно искажают ситуацию (а иногда – искажают и не в совсем популярных: см. историю про “голографическую кротовую нору”), заявляя, что алгоритм Шора уже был успешно реализован на таких-то и таких-то конфигурациях. При этом для алгоритма Шора ключевое значение имеет не “суперпозиция состояний”, про которую всё время рассказывают, а реализация квантового преобразования Фурье, потому что именно в нём состоит содержательная часть – алгоритм должен работать потому, что схемы преобразования Фурье позволяют, в теории, определить период функции, заданной на значениях квантовых регистров. Однако в экспериментах именно эту часть (преобразование Фурье) существенно упрощают или вообще исключают, так как нет доступных экспериментальных квантовых схем, подходящих для практической реализации. На малых разрядностях (несколько битов/кубитов) преобразование Фурье для алгоритма Шора вообще не имеет вычислительного смысла, поскольку в принципе нельзя увидеть “длинных” периодов. Не исключено, что в случае “коррекции ошибок” на дополнительных схемах – преобразование Фурье совсем не будет работать для отыскания периода из-за того, что алгоритм-то, по предназначению, целочисленный. И это если оставить за скобками то, что создание гипотетического квантового компьютера большой разрядности напрямую затрагивает основания современной физики, поскольку именно такой квантовый компьютер с необходимостью попадает на границу между “квантовым (микро)миром” и “неквантовым (макро)миром”, которая совсем не ясна, вокруг которой строятся разные интерпретации.
Из этого, впрочем, не следует вывод, что квантовые компьютеры подходящей разрядности вообще не создадут. Но пока что трудности большие.
Комментарии (1) »
Ещё из области распространённых странных формулировок, про квантовую запутанность для “разнесённых в пространстве” частиц: “Если измерить спин одной частицы, то значение спина другой, запутанной, мгновенно окажется противоположным”. Тут совершенно не важно, “спин” или ещё какой-то термин используется – смысл фразы сводится к якобы мгновенному изменению состояния в результате измерения между двумя частицами. Измеривший одну частицу экспериментатор как-то сразу знает, какое теперь состояние у второй. Формулировка весьма непонятная, конечно. Что означает – “знает”? Вторую частицу ещё кто-то должен измерить и проговорить результат. С другой стороны, можно считать, что состояние системы из двух частиц и так было известно, заранее, ну, если работает используемая теория; и это состояние вовсе “не поменялось мгновенно” для второй частицы, а, в лучшем случае, разрушилось. Не требуется наличие мгновенного действия, оно тут, как и пространство, оказывается привнесённым.
Исходный смысл в результате упрощения оказывается заменён на смысл противоположный (“смысл”, а не “спин”). Изначальное рассуждение, исторически, касалось совсем другой ситуации. А именно: если какой-то интегральный показатель известен для системы из пары частиц по происхождению этой системы, а кроме того, принято, что для этого показателя “действуют законы сохранения”, тогда из измерений, выполненных на одной частице, можно простым способом вычислить значение для второй, с нужной степенью точности (и это могут быть вычисления “дополняющих” характеристик, но не важно). Если постулируется, что некоторые показатели могут иметь значение 1/2 и -1/2, а сумма должна быть строго равна нулю, то если у вас результаты измерения для одной частицы дали 1/2, для другой остаётся лишь вариант -1/2, по определению, так сказать. Это совсем простое рассуждение, не требующее никаких “нелокальностей”.
Откуда тогда возникают разные сложные интерпретации и измерения в контексте неравенства Белла? А они возникают из дополнительных свойств, связанных с вероятностью получения того или иного результата при разных конфигурациях экспериментов на разных концах системы запутанных частиц. Грубо говоря, если вероятности получить значения 1/2 и -1/2 (из предыдущего примера) различаются для разных конфигураций измерителя, каким бы он ни был, то можно предложить такую последовательность измерений, ответы для которой не выйдет закодировать в выбранной теории конечным набором некоторых параметров, передаваемых, допустим, вместе с каждой из частиц, а придётся вводить какие-то дополнительные допущения в теорию – например, признать, что всегда используется состояние одной системы из двух частиц, а не двух систем, которые в какой-то момент оказались разделены, потому что так требует конкретное представление о “локальности”. Но, так или иначе, вовсе не “измерением мгновенно поменяли состояние другой частицы – сверхсветовая скорость коммуникации”. Тут, кстати, помимо странного запрета на “сверхсветовую скорость”, ещё непонятно, как определить тот самый момент “разделения”, потому что такое определение требует введения общего времени, а для измеряемой системы времени может и не быть – другая история.
Комментировать »
Среди технологических проблем, с которыми, например, сталкивается Google в разработке квантовых процессоров, называют и довольно простые по формулировке: как подключить множество кабелей-фидеров к небольшому чипу, на котором размещаются схемы, “реализующие кубиты”? “Физические кубиты” обязательно должны быть размещены плотно. То есть, чип Sycamore содержит 53 кубита и подключать приходится многие десятки кабелей, поскольку требуются индивидуальные высокочастотные линии. Соответственно, имеющиеся типы кабелей уже сильно мешают друг другу. Как быть с, потенциально, тысячами кабелей – не ясно.
Это технологический момент, конечно. Однако он тоже связан с тем, как именно могли бы не сработать имеющиеся модели в рамках создания квантовых компьютеров, которые вмещают 2^1000 и больше состояний. То есть, даже если просто попробовать делать кабель тоньше, то в какой-то момент потребуется использовать новые теории и новые модели для практических вычислений. И если, предположим, имеющийся кабель, – как модель, – двумерный, то вынужденный переход к трёхмерному представлению может добавить сложностей, привнеся в геометрию дополнительных “зацеплений”. Насколько хорошо воздействия, задающие квантовые состояния, будут “пролезать” по сверхтонким волокнам? Если правильно двигать масштаб, то на прикладном направлении достаточно быстро начинает просматриваться фундаментальное онтологическое явление – где и каким способом проходит граница, разделяющая микроскопические “квантовые” и “неквантовые” макроскопические объекты?
Впрочем, всё это просто технологические догадки. Насколько большим препятствием может оказаться физика СВЧ-сигналов внутри экзотических кабелей? Не очень понятно. Однако вряд ли стоит ожидать, что именно на этом прикладном направлении проявится принципиально непреодолимый теоретически момент – он должен проявиться где-то ещё.
Комментировать »
Один из занимательных и продуктивных, с онтологической точки зрения, моментов в “классических” (каламбур) квантово-механических экспериментах связан с интерпретацией результатов двухщелевого опыта: как именно так выходит, что когда отдельный квант регистрируется в конкретной точке экрана, он тут же (мгновенно) не регистрируется в других точках, в которые мог бы попасть, как показывает дальнейший ход эксперимента. Этот момент отмечал ещё Эйнштейн, в 20-х годах прошлого века (или раньше, не важно).
То есть, сам иллюстративный смысл опыта состоит в том, что фотоны, прошедшие через щель (щели), регистрируются в разных точках экрана, а статистическая картина при этом соответствует интерференции (или дифракции, как хотите). Выходит, регистрация фотона в конкретном месте экрана как-то выключает возможность регистрации этого же фотона в других местах этого же экрана; в противном случае – места для квантовой механики не остаётся. Конечно, можно предположить, что фотон всё же регистрируется сразу во всех “доступных” точках, но конкретный экспериментатор в конкретном экземпляре вселенной обнаруживает только одну точку, однако это не очень-то содержательный вариант – так всё что угодно и как угодно можно объяснить.
В других вариантах получается, что либо нужны некоторые дополнительные параметры, заранее кодирующие путь фотона, либо это некоторое поле вероятностей переносит каждый отдельный фотон по случайному набору веток дерева, построенного на пиках “волн вероятности” (концепция, с одной стороны, близкая к современному взгляду на проблему, с другой – до степени смешения сходная с “эфиром”). Интерпретация “мгновенного выключения” других точек на экране-приёмнике в двухщелевом опыте как раз и привела к формулированию неравенства Белла, а также и ко многим технически продвинутым экспериментам, связанным с этим неравенством (неравенствами). Более того, из этих же интерпретаций, из превращения вероятностей, и вырастают квантовые вычисления, но тоже пока как концепция.
Комментировать »
Почему лабораторная установка для квантовых экспериментов показывает именно эту статистику? Физика не должна бы отвечать на столь общий вопрос “почему?”. Тем не менее, предположим, статистика такая потому, что через несколько минут две группы исследователей, работающих в одном общем эксперименте, но в разных лабораториях, удалённых одна от другой, сравнят результаты измерений и подставят их в формулу, связанную с неравенством Белла – показатели должны совпасть с уже согласованными ожиданиями.
Впрочем, возможна и несколько другая трактовка: в тот момент, когда исследователи обменялись результатами измерений, обсудили их и пришли к общему мнению, исходные показатели, полученные ранее лабораторными установками, участвовавшими в эксперименте, определились – но, из-за особенностей восприятия принципов причинности, всем исследователям кажется, что это в прошедший момент эксперимента показатели были именно такими. Вокруг неравенства Белла много подобных лазеек, а самые интересные из них вовсе и не касаются строго экспериментальных классических предположений (вроде задержек по времени, “паразитных” наводок в пространстве и тому подобных “эксперментально-физических” особенностей, которые, впрочем, не так давно были все закрыты современными экспериментами).
Эксперимент, связанный с неравенством Белла, строится так: квантовый объект, который можно разделить на пару достаточно хорошо локализуемых феноменов (например, запутанные, сцепленные общим состоянием частицы), распределяется по двум разнесённым в пространстве лабораториям, после чего две группы исследователей (или просто два исследователя, не важно), находящихся в этих лабораториях, измеряют каждый свою часть выбранным способом, а способ выбирают случайно (насколько вообще возможно случайно что-то выбрать: со случайностью тут связан отдельный набор “лазеек” – см. ниже). Дальше строится статистика по многим последовательным измерениям, где для каждого измерения, в каждой лаборатории, исследователи фиксируют, какие именно проводились измерения и какой получился результат. Потом эти результаты сравнивают между собой, обязательно учитывая последовательность типов измерений. Получается статистика, которую описывает модель квантовой механики. Определяющим моментом оказывается то, что измеряется одна квантово-механическая система.
Однако если попытаться свести наблюдаемый результат к некоторым заранее принятым допущениям, то легко возникает ощущение некоторой “контринтуитивности” – проступает корреляция, которой, как бы, быть не должно, поскольку, предположим, расставленные в разных и достаточно удалённых точках пространства системы не должны влиять одна на другую мгновенно. Это всего лишь допущения, которые иногда считают некими законами, как в “законах физики”. Видимо, отсюда растёт сравнение с “классической физикой”, приводящее к трактовкам в стиле “если измерить спин одного электрона из пары, то спин второго тут же изменится”. Однако “классическая физика”, что бы это ни значило, тут не должна никак мешать и вообще в процесс включаться.
Неравенство Белла показывает, что статистику, согласующуюся с некоторой интерпретацией экспериментов в области квантовой механики, нельзя получить при помощи параметров, находящихся за пределами модели, если, например, запрещено согласование этих параметров через пространство со сверхсветовой скоростью (а точнее – мгновенно). Но если мгновенное согласование возможно, то и статистику можно получить какую нужно. Нужна ли тут некоторая “не-локальность”? Не особенно: можно, например, продолжать считать, что всё “локально”, потому что ещё нужно принести и сравнить данные, чтобы построить статистику; а можно считать “локальной” саму квантовую систему. Подобная “не-локальность”, построенная на попытке вложить квантовый эксперимент над потоком вероятности в ту самую “классическую физику”, это лишь один из способов интерпретации, и вовсе не обязательно, что в него верят все физики.
“Локальность” против “не-локальности” основывается на введении расстояния и пространства. Как вообще можно понимать пространство? Предположим, что разнесённые по этому самому пространству частицы, участвующие в эксперименте, вовсе не удаляются одна от другой: эти частицы максимально похожи, они даже находятся в “общем” квантовом состоянии, что, – с точки зрения потока вероятности, описываемого, предположим, волновой функцией, – просто не позволяет их разделить в пространстве для измерения. Это всё один поток, который, предположим, экспериментально расщепляется на две статистики не ранее момента обсуждения результатов измерения экспериментаторами. В момент обсуждения одна последовательность результатов измерений привязывается к другой, а математический аппарат квантовой механики просто позволяет работать с потоком вероятностей так, что при преобразованиях несколько возможных исходов не теряются. Более того, известная интерпретация предполагает, что это группы исследователей, осуществляющие экспериментальные измерения квантовых феноменов, попадают в состояние “квантовой суперпозиции”, зацепившись за волновую функцию, а тот результат, который потом описывают популярные статьи, это как раз “коллапс волновой функции исследователей”, произошедший при сравнении показателей статистики.
С другой стороны, само пространство, выраженное в метриках расстояний, может представлять собой несколько более сложный феномен. Например, более “похожие” объекты находятся ближе. Тогда разнесение (условных) антенн экспериментального оборудования вовсе не означает, что и измеряемые частицы разнесены: дело в том, что для более или менее строгого экспериментального определения расстояния “в пространстве” требуется время, а для времени – требуется опорная частота, но её найти можно не всегда.
Ещё одна занятная лазейка касается “степени случайности” параметров измерений: исследователи, согласно условиям эксперимента, должны выбирать параметры измерений непредсказуемым, для окружающей эксперимент действительности, образом. Предположим, что при создании эксперимента строго определяется не только весь возможный набор результатов измерений, но и действия самих измеряющих. Тогда, опять же, можно получить любую статистику, подходящую под любые неравенства. Устранить этот аспект (обычно, называемый “супердетерминизмом”) не получится – он находится среди допущений, задающих интерпретацию эксперимента. Это позволяет, как минимум, уверенно сохранить “локальность”. Отменяет ли наличие подобного “супердетерминизма” свободу воли исследователей? Нет, не отменяет: исследователи всё так же вольны интерпретировать результаты, а перед этим – планировать серии измерений и технические детали экспериментов, составляя собственное представление о них. Здесь, кстати, кроется один из отличительных аспектов осознания, который никак не вписывается в новомодные системы ИИ с “машинным обучением”.
И это далеко не все онтологические лазейки, связанные с интерпретацией неравенства Белла.
(См. также “Алгоритм Шора и Вселенная кубиками“, “Алгоритм Шора в фантастической машине превращения вероятностей“.)
Комментировать »
Квантовая часть алгоритма Шора, если его вообще возможно реализовать, выглядит примерно следующим образом. Первому квантовому регистру назначается состояние, представляющее собой суперпозицию всех входных числовых значений. То есть, предположим, что это 1024 “битовых разряда”, тогда получается 2^1024 различных (числовых) значений и тому подобные штуки. Однако физические детали существенно отличаются, при этом основная идея вообще не касается выбранной реализации. То есть, традиционно, в качестве примера приводят отдельные “кубиты”, как некие “конструкты”, принимающие два состояния (“спин вверх/спин вниз” или что-то похожее, это довольно сложно представить) и совместимые с представлениями о суперпозиции. В квантовой суперпозиции и состоит смысл этих конструктов, так что реализация входного регистра не важна: он является лишь входом, через который основную схему предлагается “подключить”, если хотите, к квантовой ирреальности.
Регистр можно, конечно, представлять состоящим из многих кубитов, где каждый кубит базируется на отдельной частице, но можно и считать этот регистр просто единым интерфейсом, который подтянет нужное количество состояний в область реальности, обозримую при помощи моделей физических схем. В кубитах удобнее описывать алгоритмы, поэтому их и используют в мысленных экспериментах (отсюда – модели). При этом, несмотря на оригинальную бра- и кет-нотацию, речь, концептуально, идёт об управлении потоком вероятности: “квантовая вероятность” некоторым образом перетекает из одной конфигурации в другую, при этом схлопываются те части потока, которые коммутируют (опять же, можно не задумываться над значением этого “коммутируют”; схлопываются, интерферируют и – всё; главное, чтобы обратимо). “Квантовая вероятность” – она даже больше комбинаторная, чем вероятность обычная. Это и позволяет надеяться на конкретные числовые результаты: с одной стороны, применяемые тут квантовые эффекты полагаются достаточно случайными, чтобы использовать непрерывное представление для вероятности, с другой – эти же эффекты строго разбиваются на дискретные подмножества состояний (те самые “спин вверх/спин вниз”).
Итак, в случае входного регистра для схемы алгоритма Шора, подходящий поток вероятности должен спуститься через этот регистр в ту часть, которая реализует ключевую функцию всей загадочной машинерии – дискретную экспоненту. То есть, возведение целого числа в целую (даже натуральную) степень по модулю (арифметика остатков). Этот момент в популярных изложениях почему-то не всегда упоминают, а он один из главных: требуется какая-то весьма сложная схема из экзотических объектов, которые пропускали бы входящий поток вероятности и переводили его в результат “вычисления” экспоненты, разделив поток и схлопнув часть веток таким образом, чтобы сформировался периодический результат. “Вычисление” тут должно быть в кавычках.
Если вспомнить математическую часть алгоритма, то речь про вычисление y = A^x (mod M). Обратите внимание на значение A (натуральное число), которое задаёт конкретную схему аппарата для запуска алгоритма Шора! При последовательном вычислении y = A^x (mod M), если показатель x пробегает достаточное количество значений, результат (y) начнёт повторяться, это теоретико-числовая польза от алгоритма, потому что позволяет определить, при каком x A^x == 1 (mod M) и т.д., этому как раз соответствует период данной функции, который мы хотим определить квантовой машиной. Конечно, в случае квантовой машины, никаких подобных вычислений нет: такая машина – супераналоговый прибор, возможно, что ламповый, но скорее холодный, чем тёплый: выход в квантовую ирреальность почему-то требует низких температур. В общем, не предполагается, что происходят какие-то шаги, кто-то переключает реле и сигналы, а на вход “блока функций” поступают разные “иксы”, пусть даже и параллельно. Нет, напротив, подключается несколько миллионов (предположим) загадочных “гейтов”, объединённых в схему, задающую функцию для проверяемого значения A, и всё – предполагается, что в финальном измерении через схему пройдёт поток вероятности, который преобразуется нужным способом и выльется во второй регистр.
Второй регистр тоже можно представлять некоторым единым “бассейном” для входящего потока вероятности, нужного объёма. А можно представлять набором неких кубитов, которых должно быть достаточно много, чтобы получить нужную разрешающую способность. Дело в том, что модели на бумаге можно “записывать” в “действительных числах”, однако, даже если одно действительное число в дополнение к рациональным и влезает в квантовую ирреальность, достать его оттуда полностью точно и за конечное количество измерений – не получится. Это, понятно, не мешает использованию комплексных чисел даже в прикладном квантово-механическом аппарате. Поэтому для окончательного превращения результата в целое число потребуется дополнительно место в пространстве состояний.
Во втором регистре возникает поток вероятности, внутри которого закодирован период ключевой функции, потому что этот поток прошёл через машинерию, реализующую данную функцию. Как физически устроить эту машинерию – не очень понятно. Да и термин “прошёл”, применительно к потоку, тоже достаточно условное обозначение, обусловленное лишь тем, что соответствующие математические формулы в описании будут стоять одна за другой справа.
Машина так устроена, что для этого второго регистра некоторый общий “базис” превращения потока вероятности, который был порядковым или индексным, заменяется на “частотный” – то, что традиционно называется преобразованием Фурье. На графиках это эквивалентно переходу из шаблона, где горизонтальная ось соответствует “времени” (“последовательность событий/состояний”), к шаблону, где горизонтальная ось соответствует частоте (“повторяемость событий/состояний”). Это как раз и есть второй ключевой момент: превращение из индексов в частоты. После этого можно измерять состояние, чтобы получить результат: предполагается, что в выходном регистре, с высокой вероятностью, получится измеренное состояние, которое, используя модель устройства квантовой машины, можно интерпретировать как некоторое значение, кратное периоду функции (детали, связанные с тем, что там должно быть обратное значение, которое ещё не ясно как прочитать и преобразовать, опять же пропускаем). Как это выходное значение будет, так сказать, выглядеть? Например, как набор величин измерений, полученных для каких-то частиц, из которых построен выходной интерфейс. Преобразования, начиная с результатов измерений, уже будут выполняться классическими компьютерами.
Помимо того, что детали работы сложной квантовой машины могут оказаться принципиально невычислимыми, множество дополнительных трудностей добавляет тот факт, что сам поток вероятностей внутри машины достаточно легко разрушается, зацепляясь к окружающей реальности, хоть бы через космические лучи. Чем сложнее квантовая схема, тем больше шансов на такое физическое зацепление. В идеальном случае машина должна бы быть изолирована от реальности даже лучше, чем мысленный эксперимент. И с этим могут возникнуть непредвиденные проблемы.
(См. также про алгоритм Шора и Вселенную кубиками.)
Комментировать »
Попытаться построить квантовый компьютер на тысячи кубитов имеет смысл хотя бы для того, чтобы проверить, что имеющиеся модели работают для больших пространств состояний. Попытка факторизации 1024-битного числа на гипотетическом квантовом компьютере при помощи алгоритма Шора сталкивается с необходимостью как-то действовать в пространстве из 2^1024 состояний (ну, предположим). Влезет ли такое количество состояний во Вселенную? Насколько 2^1024 вообще большое?
Понятно, что какие-то прямые физические воплощения для такого числа придумать не получится, поскольку, например, 2^1024 несравнимо больше, чем масса Земли, подсчитанная в граммах. Но можно пойти на комбинаторные ухищрения. Нарежем пространство Вселенной на 2^80 небольших кубиков. 2^80 выглядит очень похожим на разные оценки “объёма Вселенной”, “количества частиц” и других сходных параметров. Перестановкой этих кубиков можно получать разные конфигурации Вселенной, которые, возможно, будут весьма сходными. Предположим, что количество конфигураций это (2^80)! (факториал, а не восклицание). “Реальный”, – что бы это ни значило, – показатель может быть другим: нужно учитывать возможности по сочетанию получившихся кубиков, их взаимное расположение. Однако для нашего примера это не важно.
Существенно ли (2^80)! превосходит 2^1024? Может показаться, что 2^1024 очень большое число. Однако провести сравнение нетрудно. Заметьте, что при вычислении факториала каждое чётное число повышает степень двойки (иногда – больше чем на единицу), поэтому 2^1024 вкладывается уже в 1026! (ну или примерно так; 1026 = 1024+2, проверьте; естественно, 171! больше 2^1024). Что уж говорить про (2^80)!! (Здесь второй восклицательный знак обозначает восклицание.) Теперь может показаться, что 2^1024 не такое уж и большое число, чтобы не вкладываться в качественно нарезанную Вселенную.
С другой стороны, а кто сказал, что разрешается разбирать объём Вселенной на кубики и переставлять их? Это было только предположение. Тем не менее, для реализации квантового алгоритма квантовым компьютером как раз нечто подобное и требуется, только детали различаются от интерпретации к интерпретации, поэтому иногда переставляются целые разные вселенные (ну, хорошо, не “переставляются”, а “интерферируют”). При этом комбинаторная часть здесь выносится за пределы реальности. То есть, можно предположить, что некая огромная “категория”, содержащая все возможные комбинации состояний и все процессы преобразования между состояниями, локализуется в конкретный результат измерений квантового компьютера, а этот результат помогает в факторизации больших чисел. Тут есть глубоко теоретический математический смысл.
Но, конечно, если Вселенная является симуляцией, то мощностей на 2^1024 состояний может и не хватить. А ведь не исключено, что получение нужной для 1024 битов разрешающей способности может потребовать во много раз больше кубитов, а элементов квантовой схемы – так вообще миллионы могут понадобиться. Впрочем, в симуляции факторизация скорее всего известна заранее: выписать на листке подобранное вручную 1024-битное простое число, удерживая его в области внимания, довольно трудно, а все остальные способы получения больших простых чисел, предположим, представляют собой результат спуска подготовленного значения из машины симуляции вселенных (из гипервизора, так сказать). Да что уж там – даже и выписывание числа может быть “наведённым”: ведь ещё предстоит проверить его простоту (спускается ли структура простых из машины симуляции в симуляцию?).
Так или иначе, но выходит, что реализация квантового алгоритма факторизации выдвигается во внешнюю область, которая не определяется окружающей “физической реальностью”, но объекты из этой области могут в “физическую реальность” проваливаться. Однако считается, что удерживать схему из кубитов там сложно, поэтому элементы достаточно быстро должны бы входить в зацепление с “реальностью”, теряя, тем самым, возможности для эффективной работы. В физике это называется декогеренцией, а для наших целей можно считать, что “категория”, стоящая за квантовым вычислением, “запутывается” (entanglement) с той действительностью, о которой смогли договориться наблюдатели – то есть, локализуется или схлопывается, теряя все полезные свойства. Иногда результатом локализации может быть “результат вычислений”. Хотя, вычисления ли это? Отдельный вопрос.
Комментарии (1) »
Небольшое продолжение прошлогодней записки о том, считал ли Аристотель, что “тяжёлые тела падают быстрее лёгких”. В этом контексте нередко можно услышать про эксперимент на Луне, когда астронавт демонстрирует, что тяжёлый молоток и легкое перо, будучи брошенными с равной высоты, достигают лунной поверхности одновременно.
Интересно, что в “Физике” Аристотеля падение в вакууме описано так: “Конкретная скорость движения тела в среде определяется формой и силой, придавшей импульс. Выходит, что в пустоте все тела были бы одинаково быстры. Но это невозможно”. То есть, Аристотель прямо допускает, что в пустоте скорость (точнее – “быстрота”, см. ниже) может быть одинаковой, но этим он обосновывает невозможность существования пустоты. Так, в том же тексте объясняется, что нет “соизмеримых с нулём” чисел, с помощью которых можно было бы обозначить скорость движения тела в пустоте: так как при отсутствии сопротивления среды максимальная скорость получилась бы бесконечно большой. А из-за того, что эта (сколь-угодно большая, “неизмеримая”) скорость универсальна, всякая пустота должна была бы всё равно мгновенно заполниться окружающим веществом.
Вообще, Аристотель не просто рассматривает падение тел строго через некоторую среду, но и предлагает классифицировать быстроту движения по пропорциям веса и сопротивления среды. А для “пустоты” такая классификация не работает, поскольку “в пустоте все тела были бы одинаково быстры, но без причины”, либо их максимальная скорость оказывается сколь угодно большой. Соответственно, пустоту (вакуум) Аристотель отвергает. И нужно учитывать, что Аристотель оперирует древнегреческими терминами и понятиями. Так, “полнота” (“заполненное”) и “пустота” (“пустое”) – πλῆρες и κενόν – это “первичные составляющие”, но Аристотель утверждает, что “полнота” должна быстро заполнять всякую пустоту, иначе возникают трудности с классификацией движения. А “скорость” в соответствующем фрагменте у Аристотеля обозначается словом τᾰ́χος, которое можно перевести и как “быстрота”, то есть, это, конечно, “скорость”, но в смысле минимального затрачиваемого времени (конкретно, “одинаково быстры” – ἰσοταχῆ; где знакомая приставка “изо-“/ἰσο как раз и обозначает одинаковость). (Другие сходные значения для той же основы: скорый, проворный и т.д.). Да и строит соответствующее понятие Аристотель на базе соизмеримости проходимых интервалов пути, интервалов времени. То есть, речь явно идёт о максимальной скорости (“быстроте движения”), достигаемой телом.
Так что, во-первых, Аристотель прямо пишет, что в пустоте скорость всех тел была бы одинаковой (а это тот самый эксперимент с пером и молотком в вакууме, который, якобы, опровергает представления Аристотеля); во-вторых, Аристотель утверждает, что пустоты быть не может (ну или он отказывается её допускать в рамках своей модели), а поэтому практическая максимальная скорость будет всегда разной у тел разного веса, при прочих равных параметрах (а это как раз хорошо подтверждается экспериментом, если пух и свинцовый шарик бросать в воздухе или, предположим, разные камни – в воде или в масле, как, возможно, делал Аристотель).
Комментировать »
“Коммерсант” пишет про результаты соцопроса, которые связывает, ни много ни мало, с “уровнем научной грамотности” (“невысоким”).
“Как показал опрос ВЦИОМа, 35% россиян считают, что Солнце вращается вокруг Земли. О том, что Земля вращается вокруг Солнца, знает 61% респондентов.”
Понятно, что влияет массовый “научпоп”, а опрос – манипулятивный, но всё равно довольно забавно читать выводы о “научной грамотности”, сделанные по результатам ответа на довольно бессмысленный вопрос, который был сформулирован следующим образом: “Согласны ли вы с утверждением: «Солнце вращается вокруг Земли»?”. Проблема в том, что интерпретация предложенного утверждения зависит от используемой модели и системы координат. Так, можно выбрать систему с зафиксированной Землёй в начале координат и, в таком случае, Солнце вращается вокруг Земли. Подобная система оказывается удобной при решении определённых задач. Можно выбрать систему, где началом координат является Солнце, а Земля движется вокруг – такая система хорошо подходит для других задач. А можно привязать начало координат к какому-нибудь далёкому пульсару. Но все эти хитрости не делают конкретную систему “истинной” настолько, чтобы с ней соглашаться или нет. Поэтому, если уж и судить о “научной грамотности”, то, скорее, как раз по высокой доле “неочевидных” ответов.
Комментарии (3) »
Некоторые странные заблуждения из области “научпопа” очень долговечны. Например, если заглянуть в статью про Галилея в русскоязычной “Википедии”, то нетрудно обнаружить типовые суждения в стиле “Галилей опроверг (мета)физику Аристотеля”. “Википедия”, конечно, здесь выступает лишь фольклорным зеркалом истории физики, но тем рельефнее выглядит цитата: “В частности, Аристотель утверждал: скорость падения пропорциональна весу тела; движение происходит, пока действует «побудительная причина» (сила), и в отсутствие силы прекращается”.
Да, Аристотель подобное утверждал, но с очень важной оговоркой, которая полностью меняет ситуацию. Аристотель изучал падение тел в среде и рассуждал о максимальной скорости падающего тела. Утверждения Аристотеля, процитированные выше, хорошо соответствуют эксперименту. Действительно, в воздухе свинцовый шарик и клочок ваты, сравнимого размера, будут падать с разной максимальной скоростью, потому что у них различный вес. Конечно, другое дело – вакуум. Однако Аристотель изучал падение не в вакууме. Понятно, что то же самое относится и к “побудительной силе”, если учитывать реальные условия. Поэтому хорошо бы и формулировать иначе: Аристотель утверждал, что при падении в среде, – например, в воздухе, – максимальная скорость, которой может достичь тело, пропорциональна его весу. Но при такой формулировке исчезает вся сенсационность. Получается, что Галилей не “опровергал физику”, а всего лишь обобщил ограничивающие свойства, обусловленные наличием среды, и предложил другую модель, в чём-то более универсальную. Кроме того, всё это знали другие естествоиспытатели, раньше Галилея. Надо заметить, такая интерпретация сильно богаче с точки зрения философии науки, но менее литературна. Поэтому в “Википедии” читаем: “Галилей сформулировал правильные законы падения: скорость нарастает пропорционально времени”. Занятно выглядит слово “правильные”. Как можно понять, что какие-то законы физики – правильные? А если вы сравниваете разные модели при различных “граничных условиях”? Физика, вообще говоря, не претендует на “правильность законов”.
(Продолжение с подробностями.)
Ссылка по теме: Aristotle’s Physics: a Physicist’s Look, Carlo Rovelli.
Комментарии (2) »