В IEEE Spectrum небольшая статья (англ.) об истории одной программы спутниковой радиоразведки из 60-70-х годов прошлого века, в её развитии до 90-х.
Речь про системы NRO (штатовское агентство технической разведки), которые служили для обнаружения, классификации и геолокации советских РЛС по сигнатурам передатчиков. Ну, соответственно, фиксировали излучение не только передатчиков РЛС, но и других передатчиков, а также и их носителей, например, кораблей. Схема описана привычная – несколько спутников с синхронным временем и приёмниками на низкой орбите. Отдельно отмечен такой важный момент, как оперативная доставка “подписчикам” обработанных сведений. Первые спутники, в 60-х годах, записывали сигналы на магнитный носитель, пролетая над наблюдаемой территорией, а потом выгружали записанное, когда оказывались в зоне приёма наземной станции, где полученные данные ещё и анализировали какое-то заметное время. Однако к середине семидесятых добились поступления содержательной информации, представленной в удобной для “конечного пользователя” форме (то есть, сведения об активности советских систем на карте), с задержкой всего в несколько минут.
Понятно, что это всё секретные системы. Но нетрудно предположить, что с тех пор возможности спутниковой разведки для низких орбит увеличились многократно. По крайней мере, должно быть очевидно, что результат, который позволяют получить работающие синхронно сотни спутников, оснащённых современной твёрдотельной микроэлектроникой и мощными специализированными вычислителями на ASIC, просто несравним с параметрами трёх или пяти старых спутников. Тут не следует забывать про ключевой аспект: спутники на низкой орбите находятся всего в нескольких сотнях километров от поверхности планеты, а чувствительность и избирательность передового оборудования сейчас на “три поколения”, так сказать, выше, даже если за точку отсчёта взять не семидесятые, а девяностые годы прошлого века.
Комментировать »
Иногда можно прочитать, что радар работает “со скоростью света”, поэтому очень быстрый и, таким образом, любая РЛС будет всякую созданную руками современного человека “кинетическую” цель точно обнаруживать заранее и определять траекторию с большим запасом по времени, даже если скорость этой самой цели очень большая (ну, конечно, если та цель отражает радиоволны подходящим способом, но сейчас не об этом). Действительно, если рассматривать “сферический” “радар в вакууме”, то покажется, что зондирующий импульс преодолевает, скажем, 30 километров за, примерно, 0.1 мс (за десятую долю миллисекунды); чтобы сбегать в обе стороны – требуется 0.2 мс. Вроде бы, да, очень быстро.
Но представьте, что вы конструируете практический радар. В ходе конструирования довольно быстро выясняются всякие дополнительные особенности. Например, чтобы отличать собственные зондирующие импульсы среди принимаемого шума, извлекать информацию, нужно эти зондирующие импульсы особым образом модулировать. Модулирование – не только размывает импульсы “по частоте”, но и растягивает по времени. Для защиты от помех, для оптимизации рабочих параметров, требуется использовать довольно сложные схемы модуляции.
С одной стороны, для импульсного радара не очень хорошо, если уже нужно принимать сигнал, а у вас всё ещё передатчики работают, так что сильно “тянуть” зондирующий сигнал не всегда полезно (у радаров с непрерывным излучением – свои преимущества, но и свои особенности: там как раз различные утечки самым прямым образом мешают уменьшению задержек по времени). С другой стороны, оказывается, что для повышения чувствительности и разрешающей способности, для достижения устойчивой селекции сигналов – на приёме требуется некоторый дополнительный интервал времени для работы, условно говоря, разных корреляторов и схем преобразования (Фурье и др.), то есть принимаемый сигнал должен накапливаться, а неудачная обработка приводит к тому, что результат накопления отбрасывается – это потеря времени.
В общем, в процессе конструирования выясняется, что отражение одного обобщённого “сферического” импульса не даёт никакой практически полезной информации в реальном устройстве: из-за потерь в приёмном тракте и общей инертности аппаратуры, принятой энергии недостаточно даже для определения направления, что уж там говорить про измерение, хотя бы, относительной скалярной скорости по доплеровскому сдвигу. А нужно измерять траекторию, что требует некоторого заметного интервала времени даже в идеальных условиях.
И при этом все устройства, входящие в состав радара, обладают задержкой. А в некоторых случаях, это прямо механическая задержка (поворот физической антенны, например, необходимый для определения направления на цель; да, есть чисто электронные способы, но они не всегда доступны, если наблюдать требуется широкий сектор – поэтому-то, между прочим, ставят наборы антенн, направленных в разные стороны).
В общем, даже формирование луча, которому соответствует серия зондирующих импульсов, потребует заметного времени. Если радар стоит на земле, а цель летит со скоростью “всего-то” 3000 м/с, то каждые десять миллисекунд задержки размазывают изображение этой цели на 30 (тридцать) метров. Это, конечно, не так много, если радар наблюдает космический спутник, пролетающий в тысяче километров. Но те же тридцать метров оказываются весьма существенной погрешностью, если вернуться к дистанции в 30 километров, упомянутой в начале записки: пока радар десять секунд “синтезирует и измеряет” траекторию, собирая размытые сигналы, цель уже прибыла в точку назначения.
Пусть скорость света и велика, но приравнивать к ней скорость работы радаров – неверно: особенности аппаратуры создают большие сложности при наведении на быстрые цели, даже если эти цели в сотни тысяч раз медленнее, чем зондирующий импульс. (Это, впрочем, не делает наведение невозможным.)
Комментировать »
“Коммерческий поставщик спутникового наблюдения” Umbra недавно сообщил, что там начали вводить в строй систему бистатической радиолокации с синтезированием апертуры на базе нескольких низкоорбитальных спутников. По ссылке есть пример снимка, этот же пример – рассматривается ниже. Вообще, речь про специализированный радар сантиметрового диапазона, а синтезирование апертуры и согласованная вычислительная обработка данных позволяют сильно улучшить показатели: разрешающую способность, обнаружение движущихся целей и пр. Сейчас спутников в этом проекте, как пишут, запущено всего восемь, два самых новых как раз и обеспечивают базу для бистатической радиолокации. Поддержку оказывает DARPA.
Понятно, что результат радара – это далеко не цветная картинка, полученная телескопом для публикации в Google Earth (см. наложение ниже). Но у радара целый ряд преимуществ, тем более, если речь идёт об орбитальной радиолокации с разнесением передатчика и приёмника. Такой орбитальный радар видит ночную часть земной поверхности, может просвечивать не только сквозь облака, но и через некоторые наземные укрытия; зондирующий радиосигнал с высокой разрешающей способностью позволяет отличать макеты техники от настоящей техники и, в теории, может даже извлекать сведения о подземных коммуникациях (находящихся на небольшой глубине в подходящих почвах) и обнаруживать подвижные субмарины в подводном положении (по спутному следу). Спутники Umbra находятся на высоте около 550 км (450 – 600 км), а низкая орбита тоже приносит свои преимущества, даже по сравнению с самолётами. (Но, например, на радарной картинке не видна надпись, нанесённая на основание плотины с иллюстрации ниже.)
В качестве иллюстрации работы бистатической радиолокации Umbra публикует изображение дамбы большой ГЭС в Пакистане.
Общий вид:
(Cпутниковый радар Umbra.)
Выделен фрагмент, который ниже дан с увеличением до “пиксел в пиксел”:
(Umbra.)
Фрагмент с большим разрешением
(Umbra.)
Примерное наложение на снимок, доступный в Google Earth:
Занятно, что совпадает почти вся техника, выставленная во дворе (Umbra/Google). От Umbra, кстати, есть немало данных в открытом доступе.
Комментировать »
Немного технологических параллелей. Предположим, что на сервер баз данных, через сеть, отправляются запросы добавления записей. При этом каждый запрос требует завершения транзакции – то есть, обратно клиенту должен прийти пакет, подтверждающий выполнение, после этого клиент может отправить следующий запрос. В условных терминах привычного SQL – это будут команды INSERT. Известно, что в такой схеме производительность, по числу добавлений в секунду, определяется сетевой задержкой. То есть, если пакет находится в пути 10 ms, то сервер должен дожидаться следующего INSERT 20 ms (потому что в обе стороны), а это гарантирует верхний предел в 50 записей в секунду, даже если сервер выполняет одну запись за 1 микросекунду (на несколько десятичных порядков быстрее).
Проблема, конечно, решается поточной записью “списками”, когда новые запросы поступают без ожидания завершения транзакции или какого-либо подтверждения по предыдущим запросам (например, COPY). Сетевая задержка тут уже успевает помешать только один раз, в начале соединения, а дальше – очередной запрос поступает на сервер тут же, следом за предыдущим, что позволяет работать с большей производительностью.
Естественно, эта особенность действует не только для баз данных: ограничивающее влияние сетевых задержек на транзакционные схемы с подтверждением есть в TCP (где с этим явлением борются: см. TCP Fast Open), в TLS (здесь тоже борются: см. TLS Early Data/0-RTT и др.), и в других протоколах. Схема обобщается и на многие решения, которые не имеют отношения к интернет-протоколам.
Рассмотрим такой сценарий: РЛС, предназначенная для определения координат и скорости “быстрых объектов” на “существенном расстоянии”. Тривиальная импульсная РЛС, полагающаяся на отражения отдельных зондирующих импульсов в строгом порядке, оказывается в такой же ситуации, как и сервер баз данных выше (при том, конечно, что РЛС появились раньше таких серверов). Излучили короткий импульс – приняли отражённый сигнал, обработали, отправили очередной импульс – если время до цели 1 ms (300 км, примерно), то получается разрешающая способность наблюдения в 500 Гц, максимум. А если цель дальше, то будет меньше. Хуже всего, что отражённый сигнал вообще может не прийти обратно к точке излучения на нужном уровне. Но если импульсы отправлять чаще, не ждать отражения, или даже использовать непрерывный зондирующий сигнал, то ситуация, в теории, резко улучшается, как и в случае с сервером баз данных: можно обрабатывать отражённый сигнал с разрешением хоть в гигагерц. На практике, впрочем, возникнут проблемы, потому что РЛС – это не сервер баз данных. Принимать сигнал одновременно с излучением – весьма трудно, если не использовать разнесённые в пространстве антенны (бистатическая радиолокация). А увеличение частоты следования зондирующих импульсов требует использования более сложных алгоритмов кодирования и обработки, которые позволяют различать отражённые сигналы, соответствующие различным зондирующим импульсам. Это, впрочем, обычная задача для современных РЛС.
Комментировать »
Когда обсуждают низкоорбитальные спутники, то нередко забывают, что это хоть и космический спутник, но, как точка наблюдения, он оказывается очень близко к наблюдаемой наземной территории: например, высота Starlink – около 550 км, а была и заявка на 340 км, ещё ближе. То есть, тот же Starlink, это такой универсальный орбитальный сенсор, построенный на тысячах спутников, который находится на дистанции, сравнимой с параметрами лучших из современных авиационных РЛС. И спутник может оказаться сильно ближе, чем способен подойти разведывательный самолёт или беспилотник.
При этом у спутников, работающих как единая сеть, есть и другие преимущества. Так, поскольку разные спутники одновременно оказываются на разных “углах”, относительно наблюдаемого сектора, получается что-то вроде всеракурсной системы. Например, можно с разных ракурсов синхронно наблюдать источники ИК-излучения. Скажем, конструкторы снижали заметность в инфракрасном диапазоне для одного из ракурсов (вспомните “лабиринтные” воздухозаборники на малозаметных реактивных самолётах), однако спутники наблюдают цель с совсем других ракурсов (и тут даже вывод разогретых газов вверх только помогает спутниковой системе). ИК-излучение техники почти всегда трудноустранимо, а иногда – неустранимо совсем. Но возможности спутниковой системы не ограничиваются инфракрасным диапазоном.
Понятно, что наличие распределённой сети приёмников с синхронным временем позволяет в пассивном режиме определять координаты целей. Но, конечно, одно дело “сферический конь в вакууме”, а совсем другое – реальные данные или источники сигналов в атмосфере. Теоретический случай с одним источником периодического сигнала кажется очень простым: достаточно взять записи сигналов на разных спутниках и совместить их, сдвинув по времени – величина сдвига даст радиусы до источника из нескольких точек (приёмников на спутниках). Однако нетрудно придумать множество практических проблем. Например, кто сказал, что один и тот же реальный источник излучения будет давать одинаковую (ну, с точностью до временного сдвига) картину на разных спутниковых приёмниках? Во-первых, сам источник в разные стороны светит различно, даже если это маяк. Во-вторых, естественные и искусственные помехи, отражения, а также и прочие атмосферные искажения, дают разный эффект с разных ракурсов. Хуже того, источников излучения обычно много, а их селекция, да ещё и пассивной системой, доставляет сложности, особенно, если не забывать про то, что движется и цель, и каждый спутник.
Вообще, если приёмник позволяет получать параметры угла наблюдения для источника, то можно улучшить картину, используя эти данные. Геометрия, впрочем, и тут создаёт препятствия. Одно из самых очевидных – такое: изображение-точка конкретного источника на “сенсоре приёмника” соответствует прямой, проходящей через эту точку сенсора и через сам источник (пусть он точечный). При этом, если приёмников несколько, то различные точки на сенсоре одного приёмника могут соответствовать единственной точке на сенсоре другого, особенно – из-за погрешности. Утрированный двумерный пример: различимые для одного приёмника точки сворачиваются в одну для другого; то есть, на одном приёмнике видны пять точек-источников, но на втором эти пять точек уложились в две, поскольку какие-то источники зашли друг за друга, что добавляет несколько возможных пространственных конфигураций, а просто сопоставить углы и корректно определить координаты “по параллаксу” уже не получится. Более того, разное сближение источников, как оно наблюдается разными приёмниками, создаёт и разные суммарные сигналы, затрудняя селекцию. Естественно, добавление ещё нескольких приёмников улучшает ситуацию, как улучшает её здесь и быстрое движение спутников, несущих аппаратуру наблюдения.
Занятно, что селекция источников, корректное приведение данных к пространственной картине, похожей на реальность – всё это весьма напоминает, как ни странно, задачи современной “вычислительной литографии”, позволяющей достигать минимальных показателей пространственного разрешения при производстве компьютерных чипов. Только там вычислительно определяют характеристики источника излучения и маски-шаблона так, чтобы получить нужную “картину” на целевой подложке, чтобы минимизировать “помехи”, а в случае с сетью пассивных сенсоров – по характеристикам “точек” на сенсорах и пространственной конфигурации приёмников (“маска”) требуется вычислить возможные “картины” и, таким образом, удалить помехи.
Кстати, что касается помех: сеть пассивных орбитальных приёмников, если они используют достаточное разрешение по времени в схемах преобразования сигнала, позволит определять координаты источника помех, даже если сигнал – просто шум. Если же сигнал помехи имеет хорошо обнаруживаемую структуру, то задача упрощается. Понятно, что аналогичным образом можно использовать не помехи, а рабочие сигналы РЛС (и не только РЛС).
Спутниковые приёмники могут принимать сигнал подсвета, который выдаёт передатчик наземной или воздушной радиолокационной станции, действующий согласованно со спутниковой системой. Тут орбитальное расположение опять может улучшать ситуацию сразу по нескольким направлениям: так как приёмников много, они имеют возможность синтезировать рассеянный, в результате сложного отражения целью, сигнал; а так как приёмники находятся с других ракурсов, относительно передатчика, то и принимать могут отражённый сигнал, который в точке передатчика не виден; при этом расположение на низкой орбите позволяет снизить потери энергии сигнала. В последнем случае важен буквально каждый километр – посудите сами: затухание происходит пропорционально квадрату расстояния, это же относится и к отражённому сигналу. Конечно, никто не отменял и обратного варианта, – наземный приёмник и орбитальные передатчики, – но в этой заметке речь шла про полностью пассивные спутниковые решения.
Так что сети низкоорбитальных спутников, типа сети Starlink, полезны не только и не столько для широкополосной радиосвязи.
Комментировать »
Спутниковая система интернет-доступа Starlink включает весьма продвинутые наземные терминалы, оснащённые АФАР (если судить по опубликованной информации о внутреннем устройстве терминалов, там установлена именно активная решетка – см. познавательный обзор по ссылке в конце записки). Некоторое время назад я уже писал, что, в теории, огромная спутниковая группировка Starlink может являться фундаментом для мощного орбитального радара, подобных которому ещё не было. Если к этой гипотезе присоединить множество наземных станций (терминалов), которые также управляются центрально и имеют общий источник синхронного времени, то возможности этого комплекса, как радара, взлетают, так сказать, до небес.
Так, наземные станции смогут обеспечивать подсветку для приёмников, находящихся на спутниках. Каждый терминал оснащён хорошим GPS-процессором, это гарантирует синхронизацию времени (собственно, и время, и координаты – терминалы могли бы определять и только по спутникам Starlink, но с GPS – процесс будет гораздо более точным и стабильным). Активная антенная решётка, с цифровым управлением, позволяет реализовать самые продвинутые алгоритмы формирования сигналов, то есть, терминалы смогут излучать наборы опорных импульсов с поверхности, при этом все характеристики этих импульсов можно динамически определять из единого центра. Это довольно важный технический аспект, поскольку он позволяет реализовать весьма хитрые эффекты при помощи управляемого взаимодействия сигналов, излучаемых разными наземными терминалами и спутниками. Естественно, присутствие полностью управляемых наземных трансиверов существенно расширяет возможности “обычной” бистатической (и многопозиционной) радиолокации, доступной спутниковой группировке. Точное измерение на земле параметров зондирующего сигнала, излучаемого со спутника, позволяет поднять качество цифровой обработки, например, можно обнаруживать, анализировать, а потом с выгодой использовать атмосферные искажения. Нетрудно предложить и многие другие улучшения для подобной радиосистемы.
Другими словами, мощные наземные терминалы, – без которых, понятно, Starlink, как система связи, не имеет смысла, – расширяют и возможности “побочного” применения этого уникального комплекса. На картинке ниже – внешний вид антенной решётки терминала Starlink, а ссылка ведёт на подробный разбор (в прямом смысле) этого интересного устройства (англ. Youtube.com).

Комментарии (1) »
SpaceX начали выводить на орбиту спутники связи, предназначенные для реализации проекта глобального беспроводного доступа к Интернету. А нам, конечно, интересно подумать над занимательными побочными эффектами данного масштабного начинания. Один из этих эффектов такой: так как это спутники связи, на борту у них есть приёмники, передатчики и антенны. При этом, так как требуется организовать широкополосную многоканальную качественную связь, все эти элементы обладают высокой гибкостью в плане управления: на дворе двадцать первый век, так что, скорее всего, на борту будет система с полностью перенастраиваемой логикой, способная быстро и точно генерировать весьма сложные сигналы. Все эти параметры необходимы для эффективного кодирования и оптимизации использования радиоканала.
И все те же параметры отдельного спутника – отлично подходят для создания орбитального радара. При этом, для решения SpaceX заявлена высокоскоростная связь между спутниками (судя по всему, речь вообще идёт об оптических каналах) и особое внимание уделяется точности определения положения спутников в пространстве (если там будут оптические каналы, то взаимное расположение можно измерять чрезвычайно точно). Это означает, что спутники смогут эффективно осуществлять согласованную обработку сигналов. Очевидно, что связь между спутниками является критическим параметром и в смысле обеспечения высокоскоростного доступа к Сети. А для гипотетического радара – это мощная платформа, позволяющая реализовать алгоритмы цифровой обработки сигналов и построить все мыслимые конфигурации радиолокационных систем. Если нужна бистатическая радиолокация, то одни спутники могут передавать зондирующий сигнал, другие – принимать его, корректируя результат на основе опорных данных, полученных по внутренней сети группировки. Предположим, что требуется синтезировать апертуру (это метод повышения чувствительности и разрешающей способности РЛС, заменяющий огромную физическую антенну на перемещение приёмника) – для этого тоже имеется отличный фундамент: есть точное общее время, известно положение всех приёмников в пространстве и приёмники-спутники постоянно движутся по довольно стабильным траекториям. Сложно придумать что-то лучше.
Таким образом, получаем адаптивный орбитальный радиолокационный комплекс, который наблюдает всю поверхность Земли – технология, сошедшая со страниц научно-фантастических романов.
Комментарии (3) »
Есть целое направление в прикладной науке: квантовые сенсоры. Это сенсоры, использующие квантовые эффекты для обнаружения и/или измерения каких-то явлений окружающего мира. К таким сенсорам относятся и квантовые радары, про которые сейчас можно нередко услышать. При этом квантовые эффекты в таких системах используются для того, чтобы повысить чувствительность, не более. Ни о каких “измерениях одной частицы из пары запутанных, чтобы определить, что случилось со второй” – речи идти не может (потому что для квантовой системы, используемой в составе сенсора, всё равно, какую “частицу” измеряли – измерение относится ко всей системе в целом).
В нестрогом виде, идея квантового радара может быть изложена следующим образом. Пусть у нас есть пара запутанных фотонов, тогда мы можем один фотон отправить зондировать пространство в поисках цели, а второй – оставить для последующего использования в измерении, в качестве “эталона”. Измерение принятого сигнала (возможно, отражённого целью) будем проводить после того, как сложим принятый фотон с “эталонным”. При этом в приёмник могут попадать и другие фотоны, из фонового излучения (это – шум). Квантовые эффекты влияют следующим образом: вероятность детектировать запутанный фотон при использовании эталона существенно выше, чем в случае с классической схемой, работающей без использования запутанности. Это приводит к тому, что существенно улучшается отношение сигнал/шум в детекторе целей. Понятно, что классический радар тоже использует фотоны, потому что работает на электромагнитном излучении. На практике, конечно, всё сложнее: предложены схемы и с единичными фотонами, и с потоками запутанных фотонов. Для реализации квантовых эффектов можно использовать оптическую (световую) систему, но есть схемы, в которых оптическая часть при помощи специального резонатора связывается с микроволновым излучением, транслируя квантовые состояния в обоих направлениях. Фактически, эта последняя схема и может быть использована в качестве основы для практического радара, потому что радар, конечно, должен быть с частотой пониже, чем ультрафиолетовый лазер.
Квантовый радар (как, впрочем, и обычный) работает в следующей логике – выбирается некий сектор пространства, измерительная система радара настраивается на этот сектор, производится измерение, а результат служит источником данных для выбора между двумя гипотезами: в рассматриваемом секторе есть цель или её там нет. Всё достаточно просто. Включение в схему квантовой запутанности позволяет с гораздо большей вероятностью правильно угадать фотоны: то есть, отличить вернувшиеся зондирующие фотоны от фотонов, составляющих шум, поступающий на вход приёмника. Но для этого нужен опорный поток запутанных фотонов, который, например, сохраняется в линии оптической задержки на время, необходимое зондирующей половине для полёта до рассматриваемого сектора и обратно. С такой задержкой связаны и проблемы: удерживать опорный “луч” длительное время (а для лазерного излучения “длительно” – измеряется наносекундами) очень сложно, поэтому квантовые радары трудно сделать дальнодействующими.
Другими словами: когда говорят о квантовом радаре, речь идёт лишь о радикальном увеличении чувствительности, и, как следствие, разрешающей способности, относительно классического радиолокатора при той же излучаемой мощности. Почему “лишь”? Потому что научно-фантастических возможностей, эксплуатирующих некую “связь” (нелокальность) между запутанными частицами, у квантового радара нет. Зато квантовые измерения позволяют лучше защититься от помех, в том числе, активных.
Сама идея создания квантовых сенсоров и квантового радара в частности, как ни странно, достаточно старая, относится к концу 50-х годов прошлого века. Но только недавно технологии позволили как-то приблизиться к реализации этой идеи в полевом устройстве. Квантовый радар, действительно, сможет обнаруживать малозаметные цели (“Стелс”) на значительном расстоянии, потому что у него высокая чувствительность (а не потому, что измеряет “одну частицу пары”). Однако он оказывается в том же положении, что и другие решения с высокой чувствительностью: радар может начать видеть крылья комара на расстояниях в десятки километров, поэтому потребуется немало вычислительной мощности, чтобы отфильтровать отметку, соответствующую комариным крыльям.
Comments Off on Квантовый радар
На страницах dxdt.ru немало заметок про РЛС. Правда, сейчас новые заметки на эту тему появляются всё реже. Нужно будет попытаться исправить ситуацию. А пока что – небольшая подборка из опубликованного:
Comments Off on Подборка заметок про РЛС
Вновь приходится слышать утверждения, что невозможно “вывести из строя комплекс ПВО” при помощи передачи в адрес его РЛС особого сигнала помехопостановщиком. Мотивировка примерно такая: “РЛС служит только для измерения расстояния до цели, воздействовать на комплекс через неё невозможно; вычислительные машины комплекса не подключены к Интернету, их тоже не достать”. В реальности, к сожалению, всё не так просто. Я уже писал на эту тему ранее, в этот раз добавлю пару детальных примеров.
Для начала, случай из моей практики, не имеющей отношения к комплексам ПВО. Однажды мы разрабатывали систему автоматического анализа изображений, для некоторой коммерческой аппаратуры. В задачи системы входил разбор поступившей с видеокамеры картинки, распознавание и подсчёт неких объектов. Как вы понимаете, “видеокамера служила только для получения картинки”. На очередном этапе отладки неожиданно выяснилось, что при наблюдении видеокамерой некоторых сцен – программная часть, реализующая анализ изображения, “падает”, в результате критической ошибки. К счастью, ситуация довольно хорошо воспроизводилась, поэтому, при помощи отладчика, удалось выяснить, что данные изображения, в момент их разбора одной из процедур, приводили к порождению большого числа (миллионы) мелких объектов в памяти компьютера. Построение индекса объектов, конечно, было реализовано с мелкой и достаточно традиционной ошибкой – переполнялся буфер, что и приводило к сбою. При этом, в случае подавляющего большинства других изображений, ничего подобного не возникало, так как ситуация с порождением миллионов объектов, вообще-то, оказалась довольно редкой: подходящее изображение попалось чисто случайно.
Собственно, в этой истории нет ничего уникального: практически все программно-аппаратные системы, работающие с реальностью, сталкиваются с тем, что некое непрограммное воздействие извне – будь то подходящая “картинка”, громкий звук или неожиданное ускорение, – приводит к аварии. Комплекс ПВО – не исключение. Программы для комплексов разрабатывают такие же инженеры-программисты, как и те, которые работают с коммерческими системами реального времени. Думаю, миф о том, что комплекс – изолированная система, сложился в головах не чуждых программирования и информационных технологий людей, которые, при этом, никогда не имели дела с разработкой систем управления, а ограничивались “электронными таблицами” и базами данных.
Перейдём к комплексам ПВО. Понятно, что активная система РЭБ может сформировать такую помеху, такой сигнал, который временно выведет вычислительные системы РЛС из строя, использовав ту или иную ошибку в программном коде. Ошибка, при этом, может считаться и не ошибкой вовсе, а особенностью, поскольку в практике применения разработчикам с её проявлением сталкиваться не приходилось. Например, рассуждая сугубо теоретически, можно представить следующую ситуацию: для индикации и сопровождения целей программное обеспечение циклически вычисляет их координаты в некоторой собственной системе; РЛС при этом проводит подсвет разных целей, перемещая луч; задача активной помехи состоит в формировании ложной цели, которая, будучи поставленной на сопровождение, начнёт давать отметку, противоречащую текущему положению луча РЛС. Возникшая в программе, после преобразования координат, конфигурация переменных не была предусмотрена программистом – пожалуйста, получаем глобальный сбой, придётся перезапускать.
Современные комплексы ПВО, оставаясь системами реального времени, имеют достаточно сложные и, в какой-то мере, гибкие программы управления. Но если речь идёт о старых советских комплексах, например о тех же классических “Буках”, то они работают по жёсткой и весьма простой временной диаграмме, что сильно упрощает получение атакующей стороной данных о том, в каком состоянии находится комплекс, что он будет делать в следующую миллисекунду.
Почему сложные активные атаки РЭБ не случались раньше, а о них рассуждают только сейчас? Всё просто: двадцать лет назад, и ранее, во-первых, не было элементной базы, которая позволила бы реализовать подобный помехопостановщик. Речь, заметьте, не столько о центральных арифметических процессорах и памяти, сколько о приёмо-передающих элементах и специальных сигнальных процессорах. Во-вторых, на перенос теоретического математического аппарата в практическую электронику требуются время, а сам нужный прикладной математический аппарат мог появиться только после накопления опыта взаимодействия с системами ПВО. Ну и в-третьих, да, огромная вычислительная мощность оказалась доступной “в поле” только относительно недавно.
Дополнение: в комментариях верно заметили, что для эффективного анализа ошибок (или особенностей) в работе комплекса ПВО нужен сам комплекс, либо образцы программного обеспечения. Это так. Однако, в теории, можно выявить потенциальные дефекты и особенности внешним наблюдением, не имея прямого доступа к самой системе. Особенно это касается старых комплексов, которые устроены по хорошо известным принципам, выдают детали внутренней работы через побочные каналы и имеют небольшое пространство состояний (что упрощает моделирование). А вот и старая записка по этой теме.
(Кстати, записка по теме – активация аппаратных закладок.)
Комментарии (6) »
В комментариях на dxdt.ru неоднократно обсуждалась радиолокационная система, использующая в качестве зондирующего поля существующие в эфире сигналы, например, от телевизионных передатчиков. Например, была такая заметка по этой теме: “РЛС поневоле“.
Jno навёл на свежее сообщение Thales – эта корпорация планирует “исследовать вопрос” использования ТВ-сигналов для создания радиолокационных систем, следящих за трафиком в воздушном пространстве. Собственно, в исходном сообщении описана равно та же схема, что и в заметках на dxdt.ru – скажем, вот в этой, двухгодичной давности: “GPS для энтузиастов: доступность технологий“. Естественно, в качестве опорного сигнала упоминают цифровое ТВ.
Замечу, что подобные РЛС конструировали и раньше. В Thales сейчас просто продвигают эту технологию в гражданский сектор, параллельно популяризируясь с ней в СМИ (куда ж там без телевидения, хоть бы и в контексте радаров, да).
Comments Off on Пассивная радиолокация на TV-сигналах от Thales