На фотографии ниже – оптическая наземная станция ESA подсвечивает лазерным лучом оптическое же оборудование на борту МКС.

ESA laser

(Источник фото.)

Лазерные системы связи для спутников позволят передавать данные с большими скоростями, обещают до 7-10 гигабит/сек. Главное, чтобы с такой скоростью можно было принимать данные из космоса: потому что загружать туда, наверх, что-то объёмное – требуется редко (исключение составляют спутниковые каналы связи для наземного использования). Если же снабдить 10 гигабитным каналом спутник, то это предоставляет возможность получать с космических телескопов видео высокого разрешения в режиме реального времени, естественно, это будет видео, показывающее события, которые происходят на поверхности Земли.

Кстати, космический телескоп с адаптивной оптикой может избирательно следить за некоторыми движущимися объектами, не тратя разрешаюшую способность на окружающий пейзаж. Например, за самолётами. Не нужно постоянно сопровождать каждый из них, достаточно периодически переключать фокус, делая по кадру пять раз в секунду. Впрочем, за самолётами лучше следить при помощи радара. А вот для поиска подводных лодок, мощный телескоп, способный передавать на землю большой поток данных, – просто необходим. Тут важно, чтобы снимки синхронно делались в разных частотных диапазонах, лучше, если ещё и точки съёмки будут разными. Данные нужно передавать на землю для того, чтобы их анализировать в реальном времени мощным компьютером, который на спутнике не получится разместить по двум причинам: вес и потребляемая мощность.



Комментарии (2) »

CompasЕсли автомобиль, транспортирующий станцию генерации панорам улиц, записывает ещё и идентификаторы (а также – радиотехнические сигнатуры) точек доступа WiFi, – естественно, с привязкой к местности, – то позже можно построить “навигационное поле”, используя данные о местоположении точек доступа. Не сложно предположить, что по такому навигационному полю, – особенно, если оно задано для “чужой территории”, – полетят беспилотники и прочая ракетная техника. Но насколько такое поле полезно в реальности?

Во-первых, точки доступа тухнут и перемещаются, внося искажения в навигационную карту. Конечно, достаточная плотность и разнообразие устройств уменьшают искажения, но серьёзная навигационная система всё равно должна уметь их, искажения, вычислять. Эта способность, будучи реализованной в программном коде, принесёт с собой ошибки и потенциальные проблемы с навигацией.

Во-вторых, точность навигации по WiFi оставляет желать лучшего: быстрый летательный аппарат просто не сможет использовать такую систему, так как характеристики накопления погрешности превысят все разумные ограничения. Сведения о местоположении точек WiFi могли бы быть полезны какому-нибудь роботу типа “Ленивец”, неторопливо ползущему по стенам домов. Но это весьма экзотическое, в смысле практической пользы, устройство. По сравнению с другими источниками “опорных” радиосигналов, вроде станций GSM и радиовышек, WiFi, в городах, предлагают большее число видимых точек, а также удобный для “захвата” сигнал (из-за используемого кодирования). Но в случае каких-то катастрофических периодов – эти точки исчезнут раньше, чем прочие системы связи.

В-третьих, если вынести за скобки GPS, для беспилотников останутся доступны другие средства навигации, прежде всего – привязка к местности по визуальным ориентирам и рельефу. У наземной робототехники с этим сложнее, но раз у нас всё равно отсняты панорамы улиц, – да ещё, наверняка, с геометрией зданий, – то и наземной технике WiFi особенно не нужен: при должном математическом обеспечении на борту, по зданиям можно ориентироваться даже в случае наличия серьёзных разрушений, а вот WiFi, в таком печальном случае, уж точно станет редкостью.

Тем не менее, так как память для бортовой вычислительной системы сейчас более чем доступна, загрузить в неё и данные по точкам доступа WiFi – вдруг пригодится в какой-нибудь экзотической ситуации?



Комментарии (2) »

U. S. ArmyВновь приходится слышать утверждения, что невозможно “вывести из строя комплекс ПВО” при помощи передачи в адрес его РЛС особого сигнала помехопостановщиком. Мотивировка примерно такая: “РЛС служит только для измерения расстояния до цели, воздействовать на комплекс через неё невозможно; вычислительные машины комплекса не подключены к Интернету, их тоже не достать”. В реальности, к сожалению, всё не так просто. Я уже писал на эту тему ранее, в этот раз добавлю пару детальных примеров.

Для начала, случай из моей практики, не имеющей отношения к комплексам ПВО. Однажды мы разрабатывали систему автоматического анализа изображений, для некоторой коммерческой аппаратуры. В задачи системы входил разбор поступившей с видеокамеры картинки, распознавание и подсчёт неких объектов. Как вы понимаете, “видеокамера служила только для получения картинки”. На очередном этапе отладки неожиданно выяснилось, что при наблюдении видеокамерой некоторых сцен – программная часть, реализующая анализ изображения, “падает”, в результате критической ошибки. К счастью, ситуация довольно хорошо воспроизводилась, поэтому, при помощи отладчика, удалось выяснить, что данные изображения, в момент их разбора одной из процедур, приводили к порождению большого числа (миллионы) мелких объектов в памяти компьютера. Построение индекса объектов, конечно, было реализовано с мелкой и достаточно традиционной ошибкой – переполнялся буфер, что и приводило к сбою. При этом, в случае подавляющего большинства других изображений, ничего подобного не возникало, так как ситуация с порождением миллионов объектов, вообще-то, оказалась довольно редкой: подходящее изображение попалось чисто случайно.

Собственно, в этой истории нет ничего уникального: практически все программно-аппаратные системы, работающие с реальностью, сталкиваются с тем, что некое непрограммное воздействие извне – будь то подходящая “картинка”, громкий звук или неожиданное ускорение, – приводит к аварии. Комплекс ПВО – не исключение. Программы для комплексов разрабатывают такие же инженеры-программисты, как и те, которые работают с коммерческими системами реального времени. Думаю, миф о том, что комплекс – изолированная система, сложился в головах не чуждых программирования и информационных технологий людей, которые, при этом, никогда не имели дела с разработкой систем управления, а ограничивались “электронными таблицами” и базами данных.

Перейдём к комплексам ПВО. Понятно, что активная система РЭБ может сформировать такую помеху, такой сигнал, который временно выведет вычислительные системы РЛС из строя, использовав ту или иную ошибку в программном коде. Ошибка, при этом, может считаться и не ошибкой вовсе, а особенностью, поскольку в практике применения разработчикам с её проявлением сталкиваться не приходилось. Например, рассуждая сугубо теоретически, можно представить следующую ситуацию: для индикации и сопровождения целей программное обеспечение циклически вычисляет их координаты в некоторой собственной системе; РЛС при этом проводит подсвет разных целей, перемещая луч; задача активной помехи состоит в формировании ложной цели, которая, будучи поставленной на сопровождение, начнёт давать отметку, противоречащую текущему положению луча РЛС. Возникшая в программе, после преобразования координат, конфигурация переменных не была предусмотрена программистом – пожалуйста, получаем глобальный сбой, придётся перезапускать.

Современные комплексы ПВО, оставаясь системами реального времени, имеют достаточно сложные и, в какой-то мере, гибкие программы управления. Но если речь идёт о старых советских комплексах, например о тех же классических “Буках”, то они работают по жёсткой и весьма простой временной диаграмме, что сильно упрощает получение атакующей стороной данных о том, в каком состоянии находится комплекс, что он будет делать в следующую миллисекунду.

Почему сложные активные атаки РЭБ не случались раньше, а о них рассуждают только сейчас? Всё просто: двадцать лет назад, и ранее, во-первых, не было элементной базы, которая позволила бы реализовать подобный помехопостановщик. Речь, заметьте, не столько о центральных арифметических процессорах и памяти, сколько о приёмо-передающих элементах и специальных сигнальных процессорах. Во-вторых, на перенос теоретического математического аппарата в практическую электронику требуются время, а сам нужный прикладной математический аппарат мог появиться только после накопления опыта взаимодействия с системами ПВО. Ну и в-третьих, да, огромная вычислительная мощность оказалась доступной “в поле” только относительно недавно.

Дополнение: в комментариях верно заметили, что для эффективного анализа ошибок (или особенностей) в работе комплекса ПВО нужен сам комплекс, либо образцы программного обеспечения. Это так. Однако, в теории, можно выявить потенциальные дефекты и особенности внешним наблюдением, не имея прямого доступа к самой системе. Особенно это касается старых комплексов, которые устроены по хорошо известным принципам, выдают детали внутренней работы через побочные каналы и имеют небольшое пространство состояний (что упрощает моделирование). А вот и старая записка по этой теме.

(Кстати, записка по теме – активация аппаратных закладок.)



Комментарии (6) »

(Вынесу сюда из комментов.) Как, в общих чертах, работает спуфинг для GPS? Чтобы разобраться, нужно вспомнить, что такое сама эта GPS в генеральном, так сказать, смысле. GPS позволяет приёмнику определить с высокой точностью расстояние до нескольких спутников, входящих в состав системы. Расстояние вычисляется на основе принимаемых со спутников радиосигналов, ключевыми моментами является знание точного времени, действующего во всей системе (приёмник + спутники), и информация о точном местоположении спутников в каждый момент времени. Дальше – чистая геометрия. Понятно, что для практической работы простого приёмника потребуется четыре спутника (почему, кстати, не три?), до которых известно расстояние, и так далее, и тому подобное.

Спуфинг основан на нескольких особенностях системы (речь о гражданском канале GPS). Во-первых, сигналы и информация об астрономическом движении – открытые, поэтому, используя приёмник, находящийся в какой-то точке Земли, можно точно вычислить сигнальную обстановку GPS в любой другой точке в заданный момент времени (ну, если владельцы системы не внесли специальных помех, да). Вычислить эту обстановку можно с упреждением по времени. Во-вторых, опять же из-за того, что сигналы открытые и незащищённые, а к тому же слабые, требующие накопления для детектирования навигационной информации, можно сгенерировать поддельный сигнал GPS, который будет близок к реальному. Передатчик этого сигнала может находиться на земле, где-то неподалёку от того приёмника, который спуфят – задавить реальный сигнал по мощности несложно. В-третьих, активная помеха должна изменяться, имитируя движение атакуемого приёмника. Соответствующие параметры помехи вычисляются либо заранее, либо в режиме онлайн.

Дальнейшее развитие ситуации, думаю, особых пояснений не требует: приёмник передаёт в систему управления новые координаты, изменяющиеся, система управления старается компенсировать “дрейф” – и беспилотник, который должен был висеть на одном месте, начинает снижаться и, скажем, падает.

Теперь предположим, что навигационная система использует несколько “внешних” источников навигационной информации. Например, GPS + ГЛОНАСС. С одной стороны, такая система может обнаружить расхождение между показаниями, если GPS “подспуфили”. Но не ясно, что в таком случае этой системе делать? Она не может определить, происходит ли спуфинг GPS или, наоборот, ГЛОНАСС. И почему, кстати, GPS заслуживает меньшего доверия, чем ГЛОНАСС? Если отключать навигацию при каждом расхождении показаний, то возникают новые требования к синхронности двух независимых навигационных источников. То есть, дополнительный риск отказа без всякого спуфинга.

Пусть источников для навигации – три. Добавим Galileo. В такой конфигурации можно было бы выбирать два источника, как-то совпадающие в показаниях, до некоторого порога. Проблема в том, что помехопостановщик может один из навигационных сигналов подавить, это даже проще, чем спуфить, а активную помеху поставить любому другому сигналу.

Теоретически, побороться с такой неприятной проблемой можно при помощи криптографии. Допустим, навигационные сигналы подписаны, открытый ключ для проверки зашивается в приёмник (в навигатор, хорошо), вместе с картами. Ключ можно обновлять и менять. Схемы отработаны. Теперь приёмник может определить, что он принимает поддельный сигнал. Это, правда, никак не помогает бороться с глушением сигнала полностью, но исключает проблему с “перехватом” управления тем или иным устройством, которое полагается только на спутниковую навигацию. Впрочем, в случае с криптографией, наложенной на слабые сигналы, возникает целый ряд новых проблем: как быстро проверять подпись? какой временной “фрейм” подписывать (понятно, что нельзя удостоверять каждую микросекунду сигнала)? и так далее. Поэтому, автономная инерциальная навигационная система, в качестве опорной, всё равно не помещает. Тем более, что спуфинг можно обнаруживать даже простым акселерометром.



Комментарии (19) »

То, что спуфинг для сигналов GPS возможен и доступен – известно давно. Сейчас вот обсуждают вполне практическую демонстрацию с беспилотником, который, при помощи интеллектуальной помехи, заставили совершить небезопасный манёвр (“перехватили управление”, так сказать). Это не первая демонстрация спуфинга, но довольно эффектная. Наиболее неприятная картинка вырисовывается, если соединить уязвимость GPS с гипотетическими самоуправляемыми автомобилями. В принципе, даже живые водители склонны излишне верить GPS, а что ожидать от автомобильной программы?

Не, понятно, что в автомобильные программы должны, конечно, встроить защиту и всё такое. И при обнаружении нарушения в сигнале GPS, авто, скажем, будет безопасно останавливаться. Хотя, толпа неожиданно замерших неподалёку от генератора помех автомобилей-роботов тоже вполне себе неприятность. Вообще, в свете управления беспилотниками “по GPS”, неясно, что автомобилю роботу лучше предпринять при сбое навигации. А ведь ещё можно вспомнить, что нынче по GPS ходят круизные лайнеры.



Комментарии (25) »

В прошлой заметке обсуждаются “малозаметные” радары. Занятно, что в типичной ситуации, когда с одной стороны “играет” радар, и его задача обнаружить цели, но не быть обнаруженным, а с другой стороны – “играет” детектор-приёмник, и его задача обнаружить радар, у детектора есть целых два серьёзных преимущества.

Во-первых, сторона с радаром не знает, где именно находится приёмник, но, по правилам игры, должна сканировать большой сектор пространства. Поэтому рано или поздно “подсветит” лучом приёмник. Во-вторых, приёмник-детектор заведомо получает гораздо большую энергию от передатчика радара, чем приёмник самого радара. Думаю, понятно почему: радар принимает отражённый сигнал, который, даже в самом лучшем случае, угасает пропорционально квадрату расстояния на пути обратно от цели; а приёмник-детектор слушает “прямой” сигнал. Кстати, как известно, именно поэтому хороший детектор может использовать информацию не только из радиосигнала основного лепестка диаграммы направленности антенны, но и из боковых лепестков, а равно и отражённые окружающими объектами сигналы радара – даже в последнем случае положение приёмника может в энергетическом смысле оказаться не хуже, чем у скрывающегося радара.

В общем, приёмнику играть несколько проще. Хотя, да, у радара есть то преимущество, что ему заведомо известны характеристики собственных сигналов, но это уже несколько другая история.

А вот в случае со скрытной радиосвязью между самолётами – ситуация иная: никаких заведомых преимуществ у перехватывающего сеанс связи приёмника нет. Скорее наоборот, все преимущества у тех, кто обменивается радиосообщениями. Они знают и время передачи, и параметры сигналов, могут согласованно использовать узконаправленные антенны.



Комментарии (3) »

Сейчас принято связывать с малозаметными истребителями “малозаметные” радары (LPI – англоязычная аббревиатура). Эти радары используют разные методы, снижающие вероятность обнаружения факта их работы детекторами. Да, понятно, что для малозаметного самолёта простой радар не подходит: “громкие” зондирующие импульсы испортят всю малую заметность. Но ведь сама проблема шире и едва ли не старше, чем “Стелс”. Скрытность работы важна не только для бортовых РЛС истребителей.

Например, существуют особые загоризонтные РЛС, предназначенные для решения разных задач, среди которых есть и наблюдение за воздушными, морскими целями, или, скажем, за стартом и полётом межконтинентальных ракет. Загоризонтные РЛС на то и загоризонтные, что будучи расположенными на земле – просматривают пространство далеко за горизонтом, расстояния измеряются сотнями и тысячами километров. То есть, такие РЛС, возможно, зондируют чужую территорию. При этом решение задачи мониторинга подразумевает, что станции работают непрерывно. Естественно, если работа такой РЛС в эфире обнаруживается другой стороной во всех деталях самыми простыми техническими мерами, то тут же возникает идея с постановкой помехи, тем более, что радар работает на большие расстояния. А помеха, понятно, может лишить сам радар практического смысла. Поэтому и тут разумной практикой оказывается использование специальных сигналов, снижающих вероятность обнаружения работы станции и, – что не менее важно, – затрудняющих раскрытие структуры сигналов и алгоритмов их формирования. Та же ситуация снижения заметности работы РЛС, но при этом никаких истребителей. Понятно, что практически любой радар станет более полезным, если его работу в эфире сделают “малозаметной”, но не для всех сценариев применения РЛС затраты на снижение заметности оказываются оправданы. Загоризонтная разведка – сценарий как раз подходящий.



Комментарии (19) »

Кстати, в продолжение темы о световых оптических системах, сканирующих небосвод вместо РЛС: СМИ распространяют видеоролик с печально известным “Фобос-Грунтом”, пролёт которого зафиксировал астроном-любитель (Thierry Legault). Ролик можно посмотреть на сайте BBC. Форма аппарата различима хорошо, хотя, конечно, говорить о точном автоматическом распознавании на основе таких данных – рановато. Но ведь и космический аппарат находится на совсем иной высоте, если сравнивать с беспилотником. В общем, ещё одно хорошее подтверждение тому, что малозаметные для РЛС беспилотники (вообще малозаметные летательные аппараты) можно эффективно обнаруживать при помощи массива специальных телескопов. Если погода позволяет, да.



Комментарии (2) »

Предположим, что наземная РЛС не в состоянии обнаружить малозаметный беспилотник, барражирующий над прикрываемым объектом. Что делать? Можно использовать телескоп и наблюдать за небом в оптическом диапазоне. Правда, у телескопа с большим увеличением обычно малое поле зрения.

То есть, для того, чтобы просматривать большую часть неба, нужно либо использовать несколько телескопов, либо очень быстро вращать одним телескопом, либо применить какой-то комплексное решение. Кстати, не обязательно вертеть весь телескоп, сканируя пространство, можно ограничиться подвижными зеркалами и линзами, входящими в оптическую систему. Тогда сканирование будет быстрым. Приплюсуйте сюда компьютерную обработку изображений, анализ движения – и вот получается пассивный сенсор, способный даже выдавать точное целеуказание.

Впрочем, хорошо видны и основные проблемы: облачность и ночь. Речь о наблюдении с земли, поэтому и первое, и второе – радикально снижают возможности светового телескопа. И если в ясную ночь можно что-то придумать в плане обнаружения звёзд, закрытых пролетающим ЛА, то в случае с облаками – эффективного решения просто нет. Что, кстати, является дополнительным фактором, оправдывающим использование технологий “Стелс” именно для снижения РЛ-заметности.



Комментарии (19) »
Навигация по запискам: « Позже Раньше »